ﻻ يوجد ملخص باللغة العربية
A striking discovery in the field of network science is that the majority of real networked systems have some universal structural properties. In generally, they are simultaneously sparse, scale-free, small-world, and loopy. In this paper, we investigate the second-order consensus of dynamic networks with such universal structures subject to white noise at vertices. We focus on the network coherence $H_{rm SO}$ characterized in terms of the $mathcal{H}_2$-norm of the vertex systems, which measures the mean deviation of vertex states from their average value. We first study numerically the coherence of some representative real-world networks. We find that their coherence $H_{rm SO}$ scales sublinearly with the vertex number $N$. We then study analytically $H_{rm SO}$ for a class of iteratively growing networks -- pseudofractal scale-free webs (PSFWs), and obtain an exact solution to $H_{rm SO}$, which also increases sublinearly in $N$, with an exponent much smaller than 1. To explain the reasons for this sublinear behavior, we finally study $H_{rm SO}$ for Sierpinski gaskets, for which $H_{rm SO}$ grows superlinearly in $N$, with a power exponent much larger than 1. Sierpinski gaskets have the same number of vertices and edges as the PSFWs, but do not display the scale-free and small-world properties. We thus conclude that the scale-free and small-world, and loopy topologies are jointly responsible for the observed sublinear scaling of $H_{rm SO}$.
We formulate a well-posedness and approximation theory for a class of generalised saddle point problems with a specific form of constraints. In this way we develop an approach to a class of fourth order elliptic partial differential equations with po
Measurement data in linear systems arising from real-world applications often suffers from both large, sparse corruptions, and widespread small-scale noise. This can render many popular solvers ineffective, as the least squares solution is far from t
In this work, new finite difference schemes are presented for dealing with the upper-convected time derivative in the context of the generalized Lie derivative. The upper-convected time derivative, which is usually encountered in the constitutive equ
We investigate several important issues regarding the Random Batch Method (RBM) for second order interacting particle systems. We first show the uniform-in-time strong convergence for second order systems under suitable contraction conditions. Second
In this paper, we analyse a new exponential-type integrator for the nonlinear cubic Schrodinger equation on the $d$ dimensional torus $mathbb T^d$. The scheme has recently also been derived in a wider context of decorated trees in [Y. Bruned and K. S