ﻻ يوجد ملخص باللغة العربية
The observed power spectrum in redshift space appears distorted due to the peculiar motion of galaxies, known as redshift-space distortions (RSD). While all the effects in RSD are accounted for by the simple mapping formula from real to redshift spaces, accurately modeling redshift-space power spectrum is rather difficult due to the non-perturbative properties of the mapping. Still, however, a perturbative treatment may be applied to the power spectrum at large-scales, and on top of a careful modeling of the Finger-of-God effect caused by the small-scale random motion, the redshift-space power spectrum can be expressed as a series of expansion which contains the higher-order correlations of density and velocity fields. In our previous work [JCAP 8 (Aug., 2016) 050], we provide a perturbation-theory inspired model for power spectrum in which the higher-order correlations are evaluated directly from the cosmological $N$-body simulations. Adopting a simple Gaussian ansatz for Finger-of-God effect, the model is shown to quantitatively describe the simulation results. Here, we further push this approach, and present an accurate power spectrum template which can be used to estimate the growth of structure as a key to probe gravity on cosmological scales. Based on the simulations, we first calibrate the uncertainties and systematics in the pertrubation theory calculation in a fiducial cosmological model. Then, using the scaling relations, the calibrated power spectrum template is applied to a different cosmological model. We demonstrate that with our new template, the best-fitted growth functions are shown to reproduce the fiducial values in a good accuracy of 1 % at $k<0.18 hompc$ for cosmologies with different Hubble parameters.
We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function of voids and haloes in redshift space, both directly and in Fourier form. In linear theory, this cross-correlation contains only monopo
We compute a general expression for the contribution of vector perturbations to the redshift-space distortion of galaxy surveys. We show that they contribute to the same multipoles of the correlation function as scalar perturbations and should thus i
We outline how redshift-space distortions (RSD) can be measured from the angular correlation function w({theta}), of galaxies selected from photometric surveys. The natural degeneracy between RSD and galaxy bias can be minimized by comparing results
We use large volume N-body simulations to predict the clustering of dark matter in redshift space in f(R) modified gravity cosmologies. This is the first time that the nonlinear matter and velocity fields have been resolved to such a high level of ac
We present the one-loop 2-point function of biased tracers in redshift space computed with Lagrangian perturbation theory, including a full resummation of both long-wavelength (infrared) displacements and associated velocities. The resulting model ac