ﻻ يوجد ملخص باللغة العربية
Grid computing systems require innovative methods and tools to identify cybersecurity incidents and perform autonomous actions i.e. without administrator intervention. They also require methods to isolate and trace job payload activity in order to protect users and find evidence of malicious behavior. We introduce an integrated approach of security monitoring via Security by Isolation with Linux Containers and Deep Learning methods for the analysis of real time data in Grid jobs running inside virtualized High-Throughput Computing infrastructure in order to detect and prevent intrusions. A dataset for malware detection in Grid computing is described. We show in addition the utilization of generative methods with Recurrent Neural Networks to improve the collected dataset. We present Arhuaco, a prototype implementation of the proposed methods. We empirically study the performance of our technique. The results show that Arhuaco outperforms other methods used in Intrusion Detection Systems for Grid Computing. The study is carried out in the ALICE Collaboration Grid, part of the Worldwide LHC Computing Grid.
The advent of experimental science facilities-instruments and observatories, such as the Large Hadron Collider, the Laser Interferometer Gravitational Wave Observatory, and the upcoming Large Synoptic Survey Telescope-has brought about challenging, l
The GLEON Research And PRAGMA Lake Expedition -- GRAPLE -- is a collaborative effort between computer science and lake ecology researchers. It aims to improve our understanding and predictive capacity of the threats to the water quality of our freshw
This paper presents BigDL (a distributed deep learning framework for Apache Spark), which has been used by a variety of users in the industry for building deep learning applications on production big data platforms. It allows deep learning applicatio
Predictive analytics in Mobile Edge Computing (MEC) based Internet of Things (IoT) is becoming a high demand in many real-world applications. A prediction problem in an MEC-based IoT environment typically corresponds to a collection of tasks with eac
In the fifth-generation (5G) networks and the beyond, communication latency and network bandwidth will be no more bottleneck to mobile users. Thus, almost every mobile device can participate in the distributed learning. That is, the availability issu