ﻻ يوجد ملخص باللغة العربية
The GLEON Research And PRAGMA Lake Expedition -- GRAPLE -- is a collaborative effort between computer science and lake ecology researchers. It aims to improve our understanding and predictive capacity of the threats to the water quality of our freshwater resources, including climate change. This paper presents GRAPLEr, a distributed computing system used to address the modeling needs of GRAPLE researchers. GRAPLEr integrates and applies overlay virtual network, high-throughput computing, and Web service technologies in a novel way. First, its user-level IP-over-P2P (IPOP) overlay network allows compute and storage resources distributed across independently-administered institutions (including private and public clouds) to be aggregated into a common virtual network, despite the presence of firewalls and network address translators. Second, resources aggregated by the IPOP virtual network run unmodified high-throughput computing middleware (HTCondor) to enable large numbers of model simulations to be executed concurrently across the distributed computing resources. Third, a Web service interface allows end users to submit job requests to the system using client libraries that integrate with the R statistical computing environment. The paper presents the GRAPLEr architecture, describes its implementation and reports on its performance for batches of General Lake Model (GLM) simulations across three cloud infrastructures (University of Florida, CloudLab, and Microsoft Azure).
Grid computing systems require innovative methods and tools to identify cybersecurity incidents and perform autonomous actions i.e. without administrator intervention. They also require methods to isolate and trace job payload activity in order to pr
High Energy Physics (HEP) and other scientific communities have adopted Service Oriented Architectures (SOA) as part of a larger Grid computing effort. This effort involves the integration of many legacy applications and programming libraries into a
The advent of experimental science facilities-instruments and observatories, such as the Large Hadron Collider, the Laser Interferometer Gravitational Wave Observatory, and the upcoming Large Synoptic Survey Telescope-has brought about challenging, l
In modern distributed computing systems, unpredictable and unreliable infrastructures result in high variability of computing resources. Meanwhile, there is significantly increasing demand for timely and event-driven services with deadline constraint
We create a novel optimisation technique inspired by natural ecosystems, where the optimisation works at two levels: a first optimisation, migration of genes which are distributed in a peer-to-peer network, operating continuously in time; this proces