ﻻ يوجد ملخص باللغة العربية
Finite blocklength and second-order (dispersion) results are presented for the arbitrarily-varying channel (AVC), a classical model wherein an adversary can transmit arbitrary signals into the channel. A novel finite blocklength achievability bound is presented, roughly analogous to the random coding union bound for non-adversarial channels. This finite blocklength bound, along with a known converse bound, is used to derive bounds on the dispersion of discrete memoryless AVCs without shared randomness, and with cost constraints on the input and the state. These bounds are tight for many channels of interest, including the binary symmetric AVC. However, the bounds are not tight if the deterministic and random code capacities differ.
We consider upper bounds on the error probability in channel coding. We derive an improved maximum-likelihood union bound, which takes into account events where the likelihood of the correct codeword is tied with that of some competitors. We compare
We analyze a wireless communication system with finite block length and finite battery energy, under quasi-static Nakagami-m fading. Wireless energy transfer is carried out in the downlink while information transfer occurs in the uplink. Transmission
This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and
This paper analyzes the effective capacity of delay constrained machine type communication (MTC) networks operating in the finite blocklength regime. First, we derive a closed-form mathematical approximation for the effective capacity in quasi-static
This paper investigates an energy-efficient non-orthogonal transmission design problem for two downlink receivers that have strict reliability and finite blocklength (latency) constraints. The Shannon capacity formula widely used in traditional desig