ﻻ يوجد ملخص باللغة العربية
We consider upper bounds on the error probability in channel coding. We derive an improved maximum-likelihood union bound, which takes into account events where the likelihood of the correct codeword is tied with that of some competitors. We compare this bound to various previous results, both qualitatively and quantitatively. With respect to maximal error probability of linear codes, we observe that when the channel is additive, the derivation of bounds, as well as the assumptions on the admissible encoder and decoder, simplify considerably.
Finite blocklength and second-order (dispersion) results are presented for the arbitrarily-varying channel (AVC), a classical model wherein an adversary can transmit arbitrary signals into the channel. A novel finite blocklength achievability bound i
We analyze a wireless communication system with finite block length and finite battery energy, under quasi-static Nakagami-m fading. Wireless energy transfer is carried out in the downlink while information transfer occurs in the uplink. Transmission
This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and
In this paper, we present a finite-block-length comparison between the orthogonal multiple access (OMA) scheme and the non-orthogonal multiple access (NOMA) for the uplink channel. First, we consider the Gaussian channel, and derive the closed form e
Effective Capacity (EC) indicates the maximum communication rate subject to a certain delay constraint while effective energy efficiency (EEE) denotes the ratio between EC and power consumption. In this paper, we analyze the EEE of ultra-reliable net