ترغب بنشر مسار تعليمي؟ اضغط هنا

Accelerated Cardiac Diffusion Tensor Imaging Using Joint Low-Rank and Sparsity Constraints

102   0   0.0 ( 0 )
 نشر من قبل Sen Ma
 تاريخ النشر 2018
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Objective: The purpose of this manuscript is to accelerate cardiac diffusion tensor imaging (CDTI) by integrating low-rankness and compressed sensing. Methods: Diffusion-weighted images exhibit both transform sparsity and low-rankness. These properties can jointly be exploited to accelerate CDTI, especially when a phase map is applied to correct for the phase inconsistency across diffusion directions, thereby enhancing low-rankness. The proposed method is evaluated both ex vivo and in vivo, and is compared to methods using either a low-rank or sparsity constraint alone. Results: Compared to using a low-rank or sparsity constraint alone, the proposed method preserves more accurate helix angle features, the transmural continuum across the myocardium wall, and mean diffusivity at higher acceleration, while yielding significantly lower bias and higher intraclass correlation coefficient. Conclusion: Low-rankness and compressed sensing together facilitate acceleration for both ex vivo and in vivo CDTI, improving reconstruction accuracy compared to employing either constraint alone. Significance: Compared to previous methods for accelerating CDTI, the proposed method has the potential to reach higher acceleration while preserving myofiber architecture features which may allow more spatial coverage, higher spatial resolution and shorter temporal footprint in the future.



قيم البحث

اقرأ أيضاً

We consider a synthetic aperture imaging configuration, such as synthetic aperture radar (SAR), where we want to first separate reflections from moving targets from those coming from a stationary background, and then to image separately the moving an d the stationary reflectors. For this purpose, we introduce a representation of the data as a third order tensor formed from data coming from partially overlapping sub-apertures. We then apply a tensor robust principal component analysis (TRPCA) to the tensor data which separates them into the parts coming from the stationary and moving reflectors. Images are formed with the separated data sets. Our analysis shows a distinctly improved performance of TRPCA, compared to the usual matrix case. In particular, the tensor decomposition can identify motion features that are undetectable when using the conventional motion estimation methods, including matrix RPCA. We illustrate the performance of the method with numerical simulations in the X-band radar regime.
86 - Talal Ahmed , Haroon Raja , 2019
This paper studies a tensor-structured linear regression model with a scalar response variable and tensor-structured predictors, such that the regression parameters form a tensor of order $d$ (i.e., a $d$-fold multiway array) in $mathbb{R}^{n_1 times n_2 times cdots times n_d}$. It focuses on the task of estimating the regression tensor from $m$ realizations of the response variable and the predictors where $mll n = prod olimits_{i} n_i$. Despite the seeming ill-posedness of this problem, it can still be solved if the parameter tensor belongs to the space of sparse, low Tucker-rank tensors. Accordingly, the estimation procedure is posed as a non-convex optimization program over the space of sparse, low Tucker-rank tensors, and a tensor variant of projected gradient descent is proposed to solve the resulting non-convex problem. In addition, mathematical guarantees are provided that establish the proposed method linearly converges to an appropriate solution under a certain set of conditions. Further, an upper bound on sample complexity of tensor parameter estimation for the model under consideration is characterized for the special case when the individual (scalar) predictors independently draw values from a sub-Gaussian distribution. The sample complexity bound is shown to have a polylogarithmic dependence on $bar{n} = max big{n_i: iin {1,2,ldots,d } big}$ and, orderwise, it matches the bound one can obtain from a heuristic parameter counting argument. Finally, numerical experiments demonstrate the efficacy of the proposed tensor model and estimation method on a synthetic dataset and a collection of neuroimaging datasets pertaining to attention deficit hyperactivity disorder. Specifically, the proposed method exhibits better sample complexities on both synthetic and real datasets, demonstrating the usefulness of the model and the method in settings where $n gg m$.
Ghost imaging LiDAR via sparsity constraints using push-broom scanning is proposed. It can image the stationary target scene continuously along the scanning direction by taking advantage of the relative movement between the platform and the target sc ene. Compared to conventional ghost imaging LiDAR that requires multiple speckle patterns staring the target, ghost imaging LiDAR via sparsity constraints using push-broom scanning not only simplifies the imaging system, but also reduces the sampling number. Numerical simulations and experiments have demonstrated its efficiency.
For remote sensing, high-resolution imaging techniques are helpful to catch more characteristic information of the target. We extend pseudo-thermal light ghost imaging to the area of remote imaging and propose a ghost imaging lidar system. For the fi rst time, we demonstrate experimentally that the real-space image of a target at about 1.0 km range with 20 mm resolution is achieved by ghost imaging via sparsity constraints (GISC) technique. The characters of GISC technique compared to the existing lidar systems are also discussed.
As a potential technology feature for 6G wireless networks, the idea of sensing-communication integration requires the system not only to complete reliable multi-user communication but also to achieve accurate environment sensing. In this paper, we c onsider such a joint communication and sensing (JCAS) scenario, in which multiple users use the sparse code multiple access (SCMA) scheme to communicate with the wireless access point (AP). Part of the user signals are scattered by the environment object and reflected by an intelligent reflective surface (IRS) before they arrive at the AP. We exploit the sparsity of both the structured user signals and the unstructured environment and propose an iterative and incremental joint multi-user communication and environment sensing scheme, in which the two processes, i.e., multi-user information detection and environment object detection, interweave with each other thanks to their intrinsic mutual dependence. The proposed algorithm is sliding-window based and also graph based, which can keep on sensing the environment as long as there are illuminating user signals. The trade-off relationship between the key system parameters is analyzed, and the simulation result validates the convergence and effectiveness of the proposed algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا