ﻻ يوجد ملخص باللغة العربية
Let $R(cdot)$ stand for the bounded-error randomized query complexity. We show that for any relation $f subseteq {0,1}^n times mathcal{S}$ and partial Boolean function $g subseteq {0,1}^n times {0,1}$, $R_{1/3}(f circ g^n) = Omega(R_{4/9}(f) cdot sqrt{R_{1/3}(g)})$. Independently of us, Gavinsky, Lee and Santha cite{newcomp} proved this result. By an example demonstrated in their work, this bound is optimal. We prove our result by introducing a novel complexity measure called the emph{conflict complexity} of a partial Boolean function $g$, denoted by $chi(g)$, which may be of independent interest. We show that $chi(g) = Omega(sqrt{R(g)})$ and $R(f circ g^n) = Omega(R(f) cdot chi(g))$.
Let $R_epsilon(cdot)$ stand for the bounded-error randomized query complexity with error $epsilon > 0$. For any relation $f subseteq {0,1}^n times S$ and partial Boolean function $g subseteq {0,1}^m times {0,1}$, we show that $R_{1/3}(f circ g^n) in
Let the randomized query complexity of a relation for error probability $epsilon$ be denoted by $R_epsilon(cdot)$. We prove that for any relation $f subseteq {0,1}^n times mathcal{R}$ and Boolean function $g:{0,1}^m rightarrow {0,1}$, $R_{1/3}(fcirc
We prove two new results about the randomized query complexity of composed functions. First, we show that the randomized composition conjecture is false: there are families of partial Boolean functions $f$ and $g$ such that $R(fcirc g)ll R(f) R(g)$.
Let $fsubseteq{0,1}^ntimesXi$ be a relation and $g:{0,1}^mto{0,1,*}$ be a promise function. This work investigates the randomised query complexity of the relation $fcirc g^nsubseteq{0,1}^{mcdot n}timesXi$, which can be viewed as one of the most gener
For integers $n$ and $k$, the density Hales-Jewett number $c_{n,k}$ is defined as the maximal size of a subset of $[k]^n$ that contains no combinatorial line. We show that for $k ge 3$ the density Hales-Jewett number $c_{n,k}$ is equal to the maximal