ترغب بنشر مسار تعليمي؟ اضغط هنا

On the randomised query complexity of composition

83   0   0.0 ( 0 )
 نشر من قبل Dmitry Gavinsky
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $fsubseteq{0,1}^ntimesXi$ be a relation and $g:{0,1}^mto{0,1,*}$ be a promise function. This work investigates the randomised query complexity of the relation $fcirc g^nsubseteq{0,1}^{mcdot n}timesXi$, which can be viewed as one of the most general cases of composition in the query model (letting $g$ be a relation seems to result in a rather unnatural definition of $fcirc g^n$). We show that for every such $f$ and $g$, $$mathcal R(fcirc g^n) in Omega(mathcal R(f)cdotsqrt{mathcal R(g)}),$$ where $mathcal R$ denotes the randomised query complexity. On the other hand, we demonstrate a relation $f_0$ and a promise function $g_0$, such that $mathcal R(f_0)inTheta(sqrt n)$, $mathcal R(g_0)inTheta(n)$ and $mathcal R(f_0circ g_0^n)inTheta(n)$ $-$ that is, our composition statement is tight. To the best of our knowledge, there was no known composition theorem for the randomised query complexity of relations or promise functions (and for the special case of total functions our lower bound gives multiplicative improvement of $sqrt{log n}$).



قيم البحث

اقرأ أيضاً

Let the randomized query complexity of a relation for error probability $epsilon$ be denoted by $R_epsilon(cdot)$. We prove that for any relation $f subseteq {0,1}^n times mathcal{R}$ and Boolean function $g:{0,1}^m rightarrow {0,1}$, $R_{1/3}(fcirc g^n) = Omega(R_{4/9}(f)cdot R_{1/2-1/n^4}(g))$, where $f circ g^n$ is the relation obtained by composing $f$ and $g$. We also show that $R_{1/3}left(f circ left(g^oplus_{O(log n)}right)^nright)=Omega(log n cdot R_{4/9}(f) cdot R_{1/3}(g))$, where $g^oplus_{O(log n)}$ is the function obtained by composing the xor function on $O(log n)$ bits and $g^t$.
Let $R_epsilon(cdot)$ stand for the bounded-error randomized query complexity with error $epsilon > 0$. For any relation $f subseteq {0,1}^n times S$ and partial Boolean function $g subseteq {0,1}^m times {0,1}$, we show that $R_{1/3}(f circ g^n) in Omega(R_{4/9}(f) cdot sqrt{R_{1/3}(g)})$, where $f circ g^n subseteq ({0,1}^m)^n times S$ is the composition of $f$ and $g$. We give an example of a relation $f$ and partial Boolean function $g$ for which this lower bound is tight. We prove our composition theorem by introducing a new complexity measure, the max conflict complexity $bar chi(g)$ of a partial Boolean function $g$. We show $bar chi(g) in Omega(sqrt{R_{1/3}(g)})$ for any (partial) function $g$ and $R_{1/3}(f circ g^n) in Omega(R_{4/9}(f) cdot bar chi(g))$; these two bounds imply our composition result. We further show that $bar chi(g)$ is always at least as large as the sabotage complexity of $g$, introduced by Ben-David and Kothari.
We prove two new results about the randomized query complexity of composed functions. First, we show that the randomized composition conjecture is false: there are families of partial Boolean functions $f$ and $g$ such that $R(fcirc g)ll R(f) R(g)$. In fact, we show that the left hand side can be polynomially smaller than the right hand side (though in our construction, both sides are polylogarithmic in the input size of $f$). Second, we show that for all $f$ and $g$, $R(fcirc g)=Omega(mathop{noisyR}(f)cdot R(g))$, where $mathop{noisyR}(f)$ is a measure describing the cost of computing $f$ on noisy oracle inputs. We show that this composition theorem is the strongest possible of its type: for any measure $M(cdot)$ satisfying $R(fcirc g)=Omega(M(f)R(g))$ for all $f$ and $g$, it must hold that $mathop{noisyR}(f)=Omega(M(f))$ for all $f$. We also give a clean characterization of the measure $mathop{noisyR}(f)$: it satisfies $mathop{noisyR}(f)=Theta(R(fcirc gapmaj_n)/R(gapmaj_n))$, where $n$ is the input size of $f$ and $gapmaj_n$ is the $sqrt{n}$-gap majority function on $n$ bits.
Suppose we have randomized decision trees for an outer function $f$ and an inner function $g$. The natural approach for obtaining a randomized decision tree for the composed function $(fcirc g^n)(x^1,ldots,x^n)=f(g(x^1),ldots,g(x^n))$ involves amplif ying the success probability of the decision tree for $g$, so that a union bound can be used to bound the error probability over all the coordinates. The amplification introduces a logarithmic factor cost overhead. We study the question: When is this log factor necessary? We show that when the outer function is parity or majority, the log factor can be necessary, even for models that are more powerful than plain randomized decision trees. Our results are related to, but qualitatively strengthen in various ways, known results about decision trees with noisy inputs.
292 - Shenggen Zheng , Daowen Qiu 2014
State complexity of quantum finite automata is one of the interesting topics in studying the power of quantum finite automata. It is therefore of importance to develop general methods how to show state succinctness results for quantum finite automata . One such method is presented and demonstrated in this paper. In particular, we show that state succinctness results can be derived out of query complexity results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا