ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction of piecewise smooth wave speeds using multiple scattering

55   0   0.0 ( 0 )
 نشر من قبل Peter Caday
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $c$ be a piecewise smooth wave speed on $mathbb R^n$, unknown inside a domain $Omega$. We are given the solution operator for the scalar wave equation $(partial_t^2-c^2Delta)u=0$, but only outside $Omega$ and only for initial data supported outside $Omega$. Using our recently developed scattering control method, we prove that piecewise smooth wave speeds are uniquely determined by this map, and provide a reconstruction formula. In other words, the wave imaging problem is solvable in the piecewise smooth setting under mild conditions. We also illustrate a separate method, likewise constructive, for recovering the locations of interfaces in broken geodesic normal coordinates using scattering control.



قيم البحث

اقرأ أيضاً

Given any $f$ a locally finitely piecewise affine homeomorphism of $Omega subset rn$ onto $Delta subset rn$ in $W^{1,p}$, $1leq p < infty$ and any $epsilon >0$ we construct a smooth injective map $tilde{f}$ such that $|f-tilde{f}|_{W^{1,p}(Omega,rn)} < epsilon$.
In this paper, we study the inverse boundary value problem for the wave equation with a view towards an explicit reconstruction procedure. We consider both the anisotropic problem where the unknown is a general Riemannian metric smoothly varying in a domain, and the isotropic problem where the metric is conformal to the Euclidean metric. Our objective in both cases is to construct the metric, using either the Neumann-to-Dirichlet (N-to-D) map or Dirichlet-to-Neumann (D-to-N) map as the data. In the anisotropic case we construct the metric in the boundary normal (or semi-geodesic) coordinates via reconstruction of the wave field in the interior of the domain. In the isotropic case we can go further and construct the wave speed in the Euclidean coordinates via reconstruction of the coordinate transformation from the boundary normal coordinates to the Euclidean coordinates. Both cases utilize a variant of the Boundary Control method, and work by probing the interior using special boundary sources. We provide a computational experiment to demonstrate our procedure in the isotropic case with N-to-D data.
234 - Otto Seiskari 2012
Conductivity equation is studied in piecewise smooth plane domains and with measure-valued current patterns (Neumann boundary values). This allows one to extend the recently introduced concept of bisweep data to piecewise smooth domains, which yields a new partial data result for Calderon inverse conductivity problem. It is also shown that bisweep data are (up to a constant scaling factor) the Schwartz kernel of the relative Neumann-to-Dirichlet map. A numerical method for reconstructing the supports of inclusions from discrete bisweep data is also presented.
This paper analyzes inverse scattering for the one-dimensional Helmholtz equation in the case where the wave speed is piecewise constant. Scattering data recorded for an arbitrarily small interval of frequencies is shown to determine the wave speed u niquely, and a direct reconstruction algorithm is presented. The algorithm is exact provided data is recorded for a sufficiently wide range of frequencies and the jump points of the wave speed are equally spaced with respect to travel time. Numerical examples show that the algorithm works also in the general case of arbitrary wave speed (either with jumps or continuously varying etc.) giving progressively more accurate approximations as the range of recorded frequencies increases. A key underlying theoretical insight is to associate scattering data to compositions of automorphisms of the unit disk, which are in turn related to orthogonal polynomials on the unit circle. The algorithm exploits the three-term recurrence of orthogonal polynomials to reduce the required computation.
We study the fixed angle inverse scattering problem of determining a sound speed from scattering measurements corresponding to a single incident wave. The main result shows that a sound speed close to constant can be stably determined by just one mea surement. Our method is based on studying the linearized problem, which turns out to be related to the acoustic problem in photoacoustic imaging. We adapt the modified time-reversal method from [P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems 25 (2009), 075011] to solve the linearized problem in a stable way, and use this to give a local uniqueness result for the nonlinear inverse problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا