ﻻ يوجد ملخص باللغة العربية
In this paper, we study the inverse boundary value problem for the wave equation with a view towards an explicit reconstruction procedure. We consider both the anisotropic problem where the unknown is a general Riemannian metric smoothly varying in a domain, and the isotropic problem where the metric is conformal to the Euclidean metric. Our objective in both cases is to construct the metric, using either the Neumann-to-Dirichlet (N-to-D) map or Dirichlet-to-Neumann (D-to-N) map as the data. In the anisotropic case we construct the metric in the boundary normal (or semi-geodesic) coordinates via reconstruction of the wave field in the interior of the domain. In the isotropic case we can go further and construct the wave speed in the Euclidean coordinates via reconstruction of the coordinate transformation from the boundary normal coordinates to the Euclidean coordinates. Both cases utilize a variant of the Boundary Control method, and work by probing the interior using special boundary sources. We provide a computational experiment to demonstrate our procedure in the isotropic case with N-to-D data.
We study the problem of unique recovery of a non-smooth one-form $mathcal A$ and a scalar function $q$ from the Dirichlet to Neumann map, $Lambda_{mathcal A,q}$, of a hyperbolic equation on a Riemannian manifold $(M,g)$. We prove uniqueness of the on
Let $c$ be a piecewise smooth wave speed on $mathbb R^n$, unknown inside a domain $Omega$. We are given the solution operator for the scalar wave equation $(partial_t^2-c^2Delta)u=0$, but only outside $Omega$ and only for initial data supported outsi
We study the inverse problem of recovery a non-linearity $f(x,u)$, which is compactly supported in $x$, in the semilinear wave equation $u_{tt}-Delta u+ f(x,u)=0$. We probe the medium with either complex or real-valued harmonic waves of wavelength $s
We show that given two hyperbolic Dirichlet to Neumann maps associated to two Riemannian metrics of a Riemannian manifold with boundary which coincide near the boundary are close then the lens data of the two metrics is the same. As a consequence, we
We consider wave equations on Lorentzian manifolds in case of low regularity. We first extend the classical solution theory to prove global unique solvability of the Cauchy problem for distributional data and right hand side on smooth globally hyperb