ﻻ يوجد ملخص باللغة العربية
Snowlines are key ingredients for planet formation. Providing observational constraints on the locations of the major snowlines is therefore crucial for fully connecting planet compositions to their formation mechanism. Unfortunately, the most important snowline, that of water, is very difficult to observe directly in protoplanetary disks due to its close proximity to the central star. Based on chemical considerations, HCO$^+$ is predicted to be a good chemical tracer of the water snowline, because it is particularly abundant in dense clouds when water is frozen out. This work maps the optically thin isotopologue H$^{13}$CO$^+$ ($J=3-2$) toward the envelope of the low-mass protostar NGC1333-IRAS2A (observed with NOEMA at ~0.9 resolution), where the snowline is at larger distance from the star than in disks. The H$^{13}$CO$^+$ emission peaks ~2 northeast of the continuum peak, whereas the previously observed H$_2^{18}$O shows compact emission on source. Quantitative modeling shows that a decrease in H$^{13}$CO$^+$ abundance by at least a factor of six is needed in the inner ~360 AU to reproduce the observed emission profile. Chemical modeling predicts indeed a steep increase in HCO$^+$ just outside the water snowline; the 50% decrease in gaseous H$_2$O at the snowline is not enough to allow HCO$^+$ to be abundant. This places the water snowline at 225 AU, further away from the star than expected based on the 1D envelope temperature structure for NGC1333-IRAS2A. In contrast, DCO$^+$ observations show that the CO snowline is at the expected location, making an outburst scenario unlikely. The spatial anticorrelation of the H$^{13}$CO$^+$ and H$_2^{18}$O emission provide a proof of concept that H$^{13}$CO$^+$ can be used as a tracer of the water snowline.
Determining the locations of the major snowlines in protostellar environments is crucial to fully understand the planet formation process and its outcome. Despite being located far enough from the central star to be spatially resolved with ALMA, the
A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains
CO is thought to be the main reservoir of volatile carbon in protoplanetary disks, and thus the primary initial source of carbon in the atmospheres of forming giant planets. However, recent observations of protoplanetary disks point towards low volat
The high spatial and line sensitivity of ALMA opens the possibility of resolving emission from molecules in circumstellar disks. With an understanding of physical conditions under which molecules have high abundance, they can be used as direct tracer
We report on the detection of a rich water reservoir in the protostellar envelope of the Class 0 source HH211. In striking contrast to all other molecules detected with Herschel/PACS, water emission peaks around the central source where both ortho an