ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging the water-snow line during a protostellar outburst

180   0   0.0 ( 0 )
 نشر من قبل Lucas Cieza
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra and HD163296, at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation, and the formation of comets, ice giants and the cores of gas giants. Here we report ALMA images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation.



قيم البحث

اقرأ أيضاً

Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of snow lines of abundant volatiles. We present chemical imaging of the CO snow line in the disk aroun d TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array (ALMA) observations of N2H+, a reactive ion present in large abundance only where CO is frozen out. The N2H+ emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~ 30 AU helps to assess models of the formation dynamics of the Solar System, when combined with measurements of the bulk composition of planets and comets.
Following an eruptive accretion event in NGC6334I-MM1, flares in the various maser species, including water masers, were triggered. We report the observed relative proper motion of the highly variable water masers associated with the massive star-for ming region, NGC6334I. High velocity H$_2$O maser proper motions were detected in 5 maser clusters, CM2-W2 (bow-shock structure), MM1-W1, MM1-W3, UCHII-W1 and UCHII-W3. The overall average of the derived relative proper motion is 85 km s$^{-1}$. This mean proper motion is in agreement with the previous results from VLA multi-epoch observations. Our position and velocity variance and co-variance matrix analyses of the maser proper motions show its major axis to have a position angle of $-$79.4$^circ$, cutting through the dust cavity around MM1B and aligned in the northwest-southeast direction. We interpret this as the axis of the jet driving the CM2 shock and the maser motion. The complicated proper motions in MM1-W1 can be explained by the combined influence of the MM1 northeast-southwest bipolar outflow, CS(6-5) north-south collimated bipolar outflow, and the radio jet. The relative proper motions of the H$_2$O masers in UCHII-W1 are likely not driven by the jets of MM1B protostar but by MM3-UCHII. Overall, the post-accretion burst relative proper motions of the H$_2$O masers trace shocks of jet motion.
Determining the locations of the major snowlines in protostellar environments is crucial to fully understand the planet formation process and its outcome. Despite being located far enough from the central star to be spatially resolved with ALMA, the CO snowline remains difficult to detect directly in protoplanetary disks. Instead, its location can be derived from N$_2$H$^+$ emission, when chemical effects like photodissociation of CO and N$_2$ are taken into account. The water snowline is even harder to observe than that for CO, because in disks it is located only a few AU from the protostar, and from the ground only the less abundant isotopologue H$_2^{18}$O can be observed. Therefore, using an indirect chemical tracer, as done for CO, may be the best way to locate the water snowline. A good candidate tracer is HCO$^+$, which is expected to be particularly abundant when its main destructor, H$_2$O, is frozen out. Comparison of H$_2^{18}$O and H$^{13}$CO$^+$ emission toward the envelope of the Class 0 protostar IRAS2A shows that the emission from both molecules is spatially anticorrelated, providing a proof of concept that H$^{13}$CO$^+$ can indeed be used to trace the water snowline in systems where it cannot be imaged directly.
265 - Sasha Hinkley 2012
We present adaptive optics photometry and spectra in the JHKL-bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young (<1 Myr) binary, c omprised of an FU Ori object and a Herbig Ae/Be star, were gathered shortly after the 2008 outburst while our high resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determine that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly (~30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 micron CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings are in contrast to previous analyses (e.g. Malbet et al 2010, Benisty et al. 2010) of this complex system which assigned the CO emission to the FU Ori component.
Snowlines are key ingredients for planet formation. Providing observational constraints on the locations of the major snowlines is therefore crucial for fully connecting planet compositions to their formation mechanism. Unfortunately, the most import ant snowline, that of water, is very difficult to observe directly in protoplanetary disks due to its close proximity to the central star. Based on chemical considerations, HCO$^+$ is predicted to be a good chemical tracer of the water snowline, because it is particularly abundant in dense clouds when water is frozen out. This work maps the optically thin isotopologue H$^{13}$CO$^+$ ($J=3-2$) toward the envelope of the low-mass protostar NGC1333-IRAS2A (observed with NOEMA at ~0.9 resolution), where the snowline is at larger distance from the star than in disks. The H$^{13}$CO$^+$ emission peaks ~2 northeast of the continuum peak, whereas the previously observed H$_2^{18}$O shows compact emission on source. Quantitative modeling shows that a decrease in H$^{13}$CO$^+$ abundance by at least a factor of six is needed in the inner ~360 AU to reproduce the observed emission profile. Chemical modeling predicts indeed a steep increase in HCO$^+$ just outside the water snowline; the 50% decrease in gaseous H$_2$O at the snowline is not enough to allow HCO$^+$ to be abundant. This places the water snowline at 225 AU, further away from the star than expected based on the 1D envelope temperature structure for NGC1333-IRAS2A. In contrast, DCO$^+$ observations show that the CO snowline is at the expected location, making an outburst scenario unlikely. The spatial anticorrelation of the H$^{13}$CO$^+$ and H$_2^{18}$O emission provide a proof of concept that H$^{13}$CO$^+$ can be used as a tracer of the water snowline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا