ترغب بنشر مسار تعليمي؟ اضغط هنا

The Antesonic Condition for the Explosion of Core-Collapse Supernovae I: Spherically Symmetric Polytropic Models: Stability & Wind Emergence

329   0   0.0 ( 0 )
 نشر من قبل Matthias Raives
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Shock revival in core-collapse supernovae (CCSNe) may be due to the neutrino mechanism. While it is known that in a neutrino-powered CCSN, explosion begins when the neutrino luminosity of the proto-neutron star exceeds a critical value, the physics of this condition in time-dependent, multidimensional simulations are not fully understood. citet{Pejcha2012} found that an `antesonic condition exists for time-steady spherically symmetric models, potentially giving a physical explanation for the critical curve observed in simulations. In this paper, we extend that analysis to time-dependent, spherically symmetric polytropic models. We verify the critical antesonic condition in our simulations, showing that models exceeding it drive transonic winds whereas models below it exhibit steady accretion. In addition, we find that (1) high spatial resolution is needed for accurate determination of the antesonic ratio and shock radius at the critical curve, and that low resolution simulations systematically underpredict these quantities, making explosion more difficult at lower resolution; (2) there is an important physical connection between the critical mass accretion rate at explosion and the mass loss rate of the post-explosion wind: the two are directly proportional at criticality, implying that, at criticality, the wind kinetic power is tied directly to the accretion power; (3) the value of the post-shock adiabatic index $Gamma$ has a large effect on the length and time scales of the post-bounce evolution of the explosion larger values of $Gamma$ result in a longer transition from the accretion to wind phases.



قيم البحث

اقرأ أيضاً

Recent multi-dimensional simulations of core-collapse supernovae are producing successful explosions and explosion-energy predictions. In general, the explosion-energy evolution is monotonic and relatively smooth, suggesting a possible analytic solut ion. We derive analytic solutions for the expansion of the gain region under the following assumptions: spherical symmetry, one-zone shell, and powered by neutrinos and $alpha$ particle recombination. We consider two hypotheses: I) explosion energy is powered by neutrinos and $alpha$ recombination, II) explosion energy is powered by neutrinos alone. Under these assumptions, we derive the fundamental dimensionless parameters and analytic scalings. For the neutrino-only hypothesis (II), the asymptotic explosion energy scales as $E_{infty} approx 1.5 M_g v_0^2 eta^{2/3}$, where $M_g$ is the gain mass, $v_0$ is the free-fall velocity at the shock, and $eta$ is a ratio of the heating and dynamical time scales. Including both neutrinos and recombination (hypothesis I), the asymptotic explosion energy is $E_{infty} approx M_g v_0^2 (1.5eta^{2/3} + beta f(rho_0))$, where $beta$ is the dimensionless recombination parameter. We use Bayesian inference to fit these analytic models to simulations. Both hypotheses fit the simulations of the lowest progenitor masses that tend to explode spherically. The fits do not prefer hypothesis I or II; however, prior investigations suggest that $alpha$ recombination is important. As expected, neither hypothesis fits the higher-mass simulations that exhibit aspherical explosions. In summary, this explosion-energy theory is consistent with the spherical explosions of low progenitor masses; the inconsistency with higher progenitor-mass simulations suggests that a theory for them must include aspherical dynamics.
133 - M. Witt , A. Psaltis , H. Yasin 2021
We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 successful explosions during sev eral seconds. We present a broad study based on three progenitors (11.2 $M_odot$, 15 $M_odot$, and 27 $M_odot$), different neutrino-heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind that survives for several seconds. This indicates that neutrino-driven winds are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 $M_odot$ progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.
233 - C. D. Ott 2009
Core-collapse supernovae are among Natures most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of gal axies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmanis scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the CoCoNuT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using t he extended conformal flatness condition for approximating the spacetime metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 solar mass progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared to Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong non-radial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.
We investigate the explosion of stars with zero-age main-sequence masses between 20 and 35 solar masses and varying degrees of rotation and magnetic fields including ones commonly considered progenitors of gamma-ray bursts (GRBs). The simulations, co mbining special relativistic magnetohydrodynamics, a general relativistic approximate gravitational potential, and two-moment neutrino transport, demonstrate the viability of different scenarios for the post-bounce evolution. Having formed a highly massive proto-neutron star (PNS), several models launch successful explosions, either by the standard supernova mechanism based on neutrino heating and hydrodynamic instabilities or by magnetorotational processes. It is, however, quite common for the PNS to collapse to a black hole (BH) within a few seconds. Others might produce proto-magnetar-driven explosions. We explore several ways to describe the different explosion mechanisms. The competition between the timescales for advection of gas through the gain layer and heating by neutrinos provides an approximate explanation for models with insignificant magnetic fields. The fidelity of this explosion criterion in the case of rapid rotation can be improved by accounting for the strong deviations from spherical symmetry and mixing between pole and equator. We furthermore study an alternative description including the ram pressure of the gas falling through the shock. Magnetically driven explosions tend to arise from a strongly magnetised region around the polar axis. In these cases, the onset of the explosion corresponds to the equality between the advection timescale and the timescale for the propagation of Alfven waves through the gain layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا