ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoevaporating PDR models with the Hydra PDR Code

61   0   0.0 ( 0 )
 نشر من قبل Emeric Bron
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent Herschel and ALMA observations of Photodissociation Regions (PDRs) have revealed the presence of a high thermal pressure (P ~ 10^7-10^8 K cm-3) thin compressed layer at the PDR surface where warm molecular tracer emission (e.g. CH+, SH+, high-J CO, H2,...) originate. These high pressures (unbalanced by the surrounding environment) and a correlation between pressure and incident FUV field (G0) seem to indicate a dynamical origin with the radiation field playing an important role in driving the dynamics. We investigate whether photoevaporation of the illuminated edge of a molecular cloud could explain these high pressures and pressure-UV field correlation. We developed a 1D hydrodynamical PDR code coupling hydrodynamics, EUV and FUV radiative transfer and time-dependent thermo-chemical evolution. We applied it to a 1D plane-parallel photoevaporation scenario where a UV-illuminated molecular cloud can freely evaporate in a surrounding low-pressure medium. We find that photoevaporation can produce high thermal pressures and the observed P-G0 correlation, almost independently from the initial gas density. In addition, we find that constant-pressure PDR models are a better approximation to the structure of photoevaporating PDRs than constant-density PDR models, although moderate pressure gradients are present. Strong density gradients from the molecular to the neutral atomic region are found, which naturally explain the large density contrasts (1-2 orders of magnitude) derived from observations of different tracers. The photoevaporating PDR is preceded by a low velocity shock (a few km/s) propagating into the molecular cloud. Photoevaporating PDR models offer a promising explanation to the recent observational evidence of dynamical effects in PDRs.



قيم البحث

اقرأ أيضاً

63 - M. Roellig , N. P. Abel , T. Bell 2007
We present a comparison between independent computer codes, modeling the physics and chemistry of interstellar photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and c hemical structure of the model clouds, and to converge the output of different codes to a common solution. A number of benchmark models have been created, covering low and high gas densities and far ultraviolet intensities. The benchmark models were computed in two ways: one set assuming constant temperatures, thus testing the consistency of the chemical network and photo-processes, and a second set determining the temperature selfconsistently. We investigated the impact of PDR geometry and agreed on the comparison of results from spherical and plane-parallel PDR models. We identified a number of key processes governing the chemical network which have been treated differently in the various codes, and defined a proper common treatment. We established a comprehensive set of reference models for ongoing and future PDR model bench-marking and were able to increase the agreement in model predictions for all benchmark models significantly.
We revised the treatment of interstellar dust in the KOSMA-tau PDR model code to achieve a consistent description of the dust-related physics in the code. The detailed knowledge of the dust properties is then used to compute the dust continuum emissi on together with the line emission of chemical species. We coupled the KOSMA-tau PDR code with the MCDRT (multi component dust radiative transfer) code to solve the frequency-dependent radiative transfer equations and the thermal balance equation in a dusty clump under the assumption of spherical symmetry, assuming thermal equilibrium in calculating the dust temperatures, neglecting non-equilibrium effects. We updated the calculation of the photoelectric heating and extended the parametrization range for the photoelectric heating toward high densities and UV fields. We revised the computation of the H2 formation on grain surfaces to include the Eley-Rideal effect, thus allowing for high-temperature H2 formation. We demonstrate how the different optical properties, temperatures, and heating and cooling capabilities of the grains influence the physical and chemical structure of a model cloud. The most influential modification is the treatment of H2 formation on grain surfaces that allows for chemisorption. This increases the total H2 formation significantly and the connected H2 formation heating provides a profound heating contribution in the outer layers of the model clumps. The contribution of PAH surfaces to the photoelectric heating and H2 formation provides a boost to the temperature of outer cloud layers, which is clearly traced by high-J CO lines. Increasing the fraction of small grains in the dust size distribution results in hotter gas in the outer cloud layers caused by more efficient heating and cooler cloud centers, which is in turn caused by the more efficient FUV extinction.
127 - Jer^ome Pety 2006
To prepare for the unprecedented spatial and spectral resolution provided by ALMA and Herschel/HIFI, chemical models are being benchmarked against each other. It is obvious that chemical models also need well-constrained observations that can serve a s references. Photo-dissociation regions (PDRs) are particularly well suited to serve as references because they make the link between diffuse and molecular clouds, thus enabling astronomers to probe a large variety of physical and chemical processes. At a distance of 400 pc (1 corresponding to 0.002 pc), the Horsehead PDR is very close to the prototypical kind of source (i.e. 1D, edge-on) needed to serve as a reference to models.
279 - F. Le Petit , B. Barzel , O. Biham 2009
Unlike gas-phase reactions, chemical reactions taking place on interstellar dust grain surfaces cannot always be modeled by rate equations. Due to the small grain sizes and low flux,these reactions may exhibit large fluctuations and thus require stoc hastic methods such as the moment equations. We evaluate the formation rates of H2, HD and D2 molecules on dust grain surfaces and their abundances in the gas phase under interstellar conditions. We incorporate the moment equations into the Meudon PDR code and compare the results with those obtained from the rate equations. We find that within the experimental constraints on the energy barriers for diffusion and desorption and for the density of adsorption sites on the grain surface, H2, HD and D2 molecules can be formed efficiently on dust grains. Under a broad range of conditions, the moment equation results coincide with those obtained from the rate equations. However, in a range of relatively high grain temperatures, there are significant deviations. In this range, the rate equations fail while the moment equations provide accurate results. The incorporation of the moment equations into the PDR code can be extended to other reactions taking place on grain surfaces.
126 - E. Bayet , S. Viti , D.A. Williams 2009
Photon-dominated regions (PDRs) are powerful molecular line emitters in external galaxies. They are expected in galaxies with high rates of massive star formation due to either starburst (SB) events or starburst coupled with active galactic nuclei (A GN) events. We have explored the PDR chemistry for a range of physical conditions representing a variety of galaxy types. Our main result is a demonstration of the sensitivity of the chemistry to changes in the physical conditions. We adopt crude estimates of relevant physical parameters for several galaxy types and use our models to predict suitable molecular tracers of those conditions. The set of recommended molecular tracers differs from that which we recommended for use in galaxies with embedded massive stars. Thus, molecular observations can in principle be used to distinguish between excitation by starburst and by SB+AGN in distant galaxies. Our recommendations are intended to be useful in preparing Herschel and ALMA proposals to identify sources of excitation in galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا