ﻻ يوجد ملخص باللغة العربية
The maximum mean discrepancy (MMD) is a kernel-based distance between probability distributions useful in many applications (Gretton et al. 2012), bearing a simple estimator with pleasing computational and statistical properties. Being able to efficiently estimate the variance of this estimator is very helpful to various problems in two-sample testing. Towards this end, Bounliphone et al. (2016) used the theory of U-statistics to derive estimators for the variance of an MMD estimator, and differences between two such estimators. Their estimator, however, drops lower-order terms, and is unnecessarily biased. We show in this note - extending and correcting work of Sutherland et al. (2017) - that we can find a truly unbiased estimator for the actual variance of both the squared MMD estimator and the difference of two correlated squared MMD estimators, at essentially no additional computational cost.
We propose a simple and general variant of the standard reparameterized gradient estimator for the variational evidence lower bound. Specifically, we remove a part of the total derivative with respect to the variational parameters that corresponds to
Efficient low-variance gradient estimation enabled by the reparameterization trick (RT) has been essential to the success of variational autoencoders. Doubly-reparameterized gradients (DReGs) improve on the RT for multi-sample variational bounds by a
Several statistical models are given in the form of unnormalized densities, and calculation of the normalization constant is intractable. We propose estimation methods for such unnormalized models with missing data. The key concept is to combine impu
We study the problem of estimating the derivatives of the regression function, which has a wide range of applications as a key nonparametric functional of unknown functions. Standard analysis may be tailored to specific derivative orders, and paramet
Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution. The Monte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so far been ignored in the MCMC community.