ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrometry with the Hubble Space Telescope: Trigonometric Parallaxes of Selected Hyads

346   0   0.0 ( 0 )
 نشر من قبل Barbara E. McArthur
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present absolute parallaxes and proper motions for seven members of the Hyades open cluster, pre-selected to lie in the core of the cluster. Our data come from archival astrometric data from FGS 3, and newer data for 3 Hyads from FGS 1R, both white-light interferometers on the Hubble Space Telescope (HST). We obtain member parallaxes from six individual Fine Guidance Sensor (FGS) fields and use the field containing van Altena 622 and van Altena 627 (= HIP 21138) as an example. Proper motions, spectral classifications and VJHK photometry of the stars comprising the astrometric refer- ence frames provide spectrophotometric estimates of reference star absolute parallaxes. Introducing these into our model as observations with error, we determine absolute parallaxes for each Hyad. The parallax of vA 627 is significantly improved by including a perturbation orbit for this previously known spectroscopic binary, now an astrometric binary. Compared to our original (1997) determina- tions, a combination of new data, updated calibration, and improved analysis lowered the individual parallax errors by an average factor of 4.5. Comparing parallaxes of the four stars contained in the Hipparcos catalog, we obtain an average factor of 11 times improvement with the HST . With these new results, we also have better agreement with Hipparcos for the four stars in common. These new parallaxes provide an average distance for these seven members, < D > = 47.5 pc, for the core a pm 1 - {sigma} dispersion depth of 3.6 pc, and a minimum depth from individual components of 16.0 pm 0.9 pc. Absolute magnitudes for each member are compared to established main sequences, with excellent agreement. We obtain a weighted average distance modulus for the core of the Hyades of m-M=3.376 pm 0.01, a value close to the previous Hipparcos values, m-M=3.33pm 0.02.



قيم البحث

اقرأ أيضاً

We present absolute parallaxes and relative proper motions for the central stars of the planetary nebulae NGC 6853 (The Dumbbell), NGC 7293 (The Helix), Abell 31, and DeHt 5. This paper details our reduction and analysis using DeHt 5 as an example. W e obtain these planetary nebula nuclei (PNNi) parallaxes with astrometric data from Fine Guidance Sensors FGS 1R and FGS 3, white-light interferometers on the Hubble Space Telescope (HST). Proper motions, spectral classifications and VJHKT_2M and DDO51 photometry of the stars comprising the astrometric reference frames provide spectrophotometric estimates of reference star absolute parallaxes. Introducing these into our model as observations with error, we determine absolute parallaxes for each PNN. Weighted averaging with previous independent parallax measurements yields an average parallax precision, sigma_{pi}/pi = 5 %. Derived distances are: d_{NGC 6853}=405^{+28}_{-25}pc, d_{NGC 7293}=216^{+14}_{-12} pc, d_{Abell 31} = 621^{+91}_{-70} pc, and d_{DeHt 5} = 345^{+19}_{-17} pc. These PNNi distances are all smaller than previously derived from spectroscopic analyses of the central stars. Derived absolute magnitudes and previously measured effective temperatures permit estimates of PNNi radii, through both the Stefan-Boltzmann relation and Eddington fluxes. Comparing absolute magnitudes with post-AGB models provides mass estimates. Masses cluster around 0.57 M(sun), close to the peak of the white dwarf mass distribution. Adding a few more PNNi with well-determined distances and masses, we compare all the PNNi with cooler white dwarfs of similar mass, and confirm, as expected, that PNNi have larger radii than white dwarfs that have reached their final cooling tracks. (Abridged)
Y dwarfs provide a unique opportunity to study free-floating objects with masses $<$30 M$_{Jup}$ and atmospheric temperatures approaching those of known Jupiter-like exoplanets. Obtaining distances to these objects is an essential step towards charac terizing their absolute physical properties. Using Spitzer/IRAC [4.5] images taken over baselines of $sim$2-7 years, we measure astrometric distances for 22 late-T and early Y dwarfs, including updated parallaxes for 18 objects and new parallax measurements for 4 objects. These parallaxes will make it possible to explore the physical parameter space occupied by the coldest brown dwarfs. We also present the discovery of 6 new late-T dwarfs, updated spectra of two T dwarfs, and the reclassification of a new Y dwarf, WISE J033605.04$-$014351.0, based on Keck/NIRSPEC $J$-band spectroscopy. Assuming that effective temperatures are inversely proportional to absolute magnitude, we examine trends in the evolution of the spectral energy distributions of brown dwarfs with decreasing effective temperature. Surprisingly, the Y dwarf class encompasses a large range in absolute magnitude in the near- to mid-infrared photometric bandpasses, demonstrating a larger range of effective temperatures than previously assumed. This sample will be ideal for obtaining mid-infrared spectra with the James Webb Space Telescope because their known distances will make it easier to measure absolute physical properties.
The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84 yr period by the faint DQZ white dwarf Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurem ents back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 +/- 0.012 Msun and 0.592 +/- 0.006 Msun for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon As age is ~2.7 Gyr. Procyon Bs location in the H-R diagram is in excellent agreement with theoretical cooling tracks for white dwarfs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitors mass was 1.9-2.2 Msun, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ~5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (~0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.
We present trigonometric parallax and proper motion measurements for two T-type brown dwarfs. We derive our measurements from infrared laser guide star adaptive optics observations spanning five years from the ShaneAO/SHARCS and NIRC2/medium-cam inst ruments on the Shane and Keck telescopes, respectively. To improve our astrometric precision, we measure and apply a distortion correction to our fields for both instruments. We also transform the Keck and ShaneAO astrometric reference frames onto the ICRS using five-parameter parallax and proper motion solutions for background reference stars from Gaia DR2. Fitting for parallax and proper motion, we measure parallaxes of $73.5pm9.2$ mas and $70.1pm6.7$ mas for WISEJ19010703+47181688 (WISE1901) and WISEJ21543294+59421370 (WISE2154), respectively. We utilize Monte Carlo methods to estimate the error in our sparse field methods, taking into account overfitting and differential atmospheric refraction. Comparing to previous measurements in the literature, all of our parallax and proper motion values fall within $2sigma$ of the published measurements, and 4 of 6 measurements are within $1sigma$. These data are among the first parallax measurements of these T dwarfs and serve as precise measurements for calibrating stellar formation models. These two objects are the first results of an ongoing survey of T dwarfs with Keck/NIRC2 and the Shane Adaptive Optics system at Lick Observatory.
Over the last 20 years Hubble Space Telescope Fine Guidance Sensor interferometric astrometry has produced precise and accurate parallaxes of astrophysical interesting stars and mass estimates for stellar companions. We review parallax results, and b inary star and exoplanet mass determinations, and compare a subset of these parallaxes with preliminary Gaia results. The approach to single-field relative astrometry described herein may continue to have value for targets fainter than the Gaia limit in the coming era of 20-30m telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا