ﻻ يوجد ملخص باللغة العربية
We investigate the structure of the one-body Reduced Density Matrix (1RDM) of three electron systems, i.e. doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an open-shell ground state. To this end, we use Configuration Interaction (CI) expansions of the exact wave function in Slater determinants built from natural orbitals in a finite dimensional Hilbert space. With the exception of maximally polarized systems, the natural orbitals of spin eigenstates are generally spin dependent, i.e. the spatial parts of the up and down natural orbitals form two different sets. A measure to quantify this spin dependence is introduced and it is shown that it varies by several orders of magnitude depending on the system. We also study the ordering issue of the spin-dependent occupation numbers which has practical implications in Reduced Density Matrix Functional Theory minimization schemes when Generalized Pauli Constraints are imposed and in the form of the CI expansion in terms of the natural orbitals. Finally, we discuss the aforementioned CI expansion when there are GPCs that are almost pinned.
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Colemans ensemble $N$-representability conditions. Recently, the topic of pure-state $N$-representability conditions, also known as generalized Pauli constraints
An active space variational calculation of the 2-electron reduced density matrix (2-RDM) is derived and implemented where the active orbitals are correlated within the pair approximation. The pair approximation considers only doubly occupied configur
We consider necessary conditions for the one-body-reduced density matrix (1RDM) to correspond to a triplet wave-function of a two electron system. The conditions concern the occupation numbers and are different for the high spin projections, $S_z=pm
In this work, we simulate the electron dynamics in molecular systems with the Time-Dependent Density Matrix Renormalization Group (TD-DMRG) algorithm. We leverage the generality of the so-called tangent-space TD-DMRG formulation and design a computat
We present a matrix-product state (MPS)-based quadratically convergent density-matrix renormalization group self-consistent-field (DMRG-SCF) approach. Following a proposal by Werner and Knowles (JCP 82, 5053, (1985)), our DMRG-SCF algorithm is based