ﻻ يوجد ملخص باللغة العربية
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Colemans ensemble $N$-representability conditions. Recently, the topic of pure-state $N$-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble $N$-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
We investigate the structure of the one-body Reduced Density Matrix (1RDM) of three electron systems, i.e. doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an open-shell ground state. To this end, we u
We consider necessary conditions for the one-body-reduced density matrix (1RDM) to correspond to a triplet wave-function of a two electron system. The conditions concern the occupation numbers and are different for the high spin projections, $S_z=pm
Based on a generalization of Hohenberg-Kohns theorem, we propose a ground state theory for bosonic quantum systems. Since it involves the one-particle reduced density matrix $gamma$ as a natural variable but still recovers quantum correlations in an
We present an textit{ab initio} theory for superconductors, based on a unique mapping between the statistical density operator at equilibrium, on the one hand, and the corresponding one-body reduced density matrix $gamma$ and the anomalous density $c
In this work we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of t