ﻻ يوجد ملخص باللغة العربية
Addition of solutes is commonly used to stabilize nanocrystalline materials against grain growth. However, segregating at grain boundaries, these solutes also affect the process of dislocation nucleation from grain boundaries under applied stress. Using atomistic simulations we demonstrate that the effect of solutes on the dislocation nucleation strongly depends on the distribution of solutes at the grain boundary, which can vary dramatically depending on the solute type. In particular, our results indicate that the solutes with a smaller size mismatch can be more effective in suppressing dislocation emission from grain boundaries. Bearing in mind that dislocation slip originating from grain boundaries or their triple junctions is the dominant mechanism of plastic deformation when grain sizes are reduced to the nanoscale, we emphasize the importance of the search for the optimal solute additions, which would stabilize the nanocrystalline material against grain growth and, at the same time, effectively suppress the dislocation nucleation from the grain boundaries.
While it is known that alloy components can segregate to grain boundaries (GBs), and that the atomic mobility in GBs greatly exceeds the atomic mobility in the lattice, little is known about the effect of GB segregation on GB diffusion. Atomistic com
Impurities are often driven to segregate to grain boundaries, which can significantly alter a materials thermal stability and mechanical behavior. To provide a comprehensive picture of this issue, the influence of a wide variety of common nonmetal im
We present a combined study by Scanning Tunneling Microscopy and atomistic simulations of the emission of dissociated dislocation loops by nanoindentation on a (001) fcc surface. The latter consist of two stacking-fault ribbons bounded by Shockley pa
Crack growth behaviour along the coherent twin boundary (CTB), i.e., $Sigma$3{112} of BCC Fe is investigated using molecular dynamics (MD) simulations. The growth of an atomistically sharp crack with {112}$<$110$>$ orientation has been examined along
Dipolar dislocation loops, prevalent in fcc metals, are widely recognized as controlling many physical aspects of plastic deformation. We present results of 3D dislocation dynamics simulations that shed light on the mechanisms of their formation, mot