ترغب بنشر مسار تعليمي؟ اضغط هنا

Quadrilateral grid generation supported on complex internal boundaries using spectral methods

41   0   0.0 ( 0 )
 نشر من قبل Sa\\'ul Buitrago Boret
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This work concerns with the following problem. Given a two-dimensional domain whose boundary is a closed polygonal line with internal boundaries defined also by polygonal lines, it is required to generate a grid consisting only of quadrilaterals with the following features: (1) conformal, that is, to be a tessellation of the two-dimensional domain such that the intersection of any two quadrilaterals is a vertex, an edge or empty (never a portion of one edge), (2) structured, which means that only four quadrilaterals meet at a single node and the quadrilaterals that make up the grid need not to be rectangular, and (3) the mesh generated must be supported on the internal boundaries. The fundamental technique for generating such grids, is the deformation of an initial Cartesian grid and the subsequent alignment with the internal boundaries. This is accomplished through the numerical solution of an elliptic partial differential equation based on finite differences. The large nonlinear system of equation arising from this formulation is solved through spectral gradient techniques. Examples of typical structures corresponding to a two-dimensional, areal hydrocarbon reservoir are presented.



قيم البحث

اقرأ أيضاً

We describe an adaptive version of a method for generating valid naturally curved quadrilateral meshes. The method uses a guiding field, derived from the concept of a cross field, to create block decompositions of multiply connected two dimensional d omains. The a priori curved quadrilateral blocks can be further split into a finer high-order mesh as needed. The guiding field is computed by a Laplace equation solver using a continuous Galerkin or discontinuous Galerkin spectral element formulation. This operation is aided by using $p$-adaptation to achieve faster convergence of the solution with respect to the computational cost. From the guiding field, irregular nodes and separatrices can be accurately located. A first version of the code is implemented in the open source spectral element framework Nektar++ and its dedicated high order mesh generation platform NekMesh.
We describe a high order technique to generate quadrilateral decompositions and meshes for complex two dimensional domains using spectral elements in a field guided procedure. Inspired by cross field methods, we never actually compute crosses. Instea d, we compute a high order accurate guiding field using a continuous Galerkin (CG) or discontinuous Galerkin (DG) spectral element method to solve a Laplace equation for each of the field variables using the open source code Nektar++. The spectral method provides spectral convergence and sub-element resolution of the fields. The DG approximation allows meshing of corners that are not multiples of $pi/2$ in a discretization consistent manner, when needed. The high order field can then be exploited to accurately find irregular nodes, and can be accurately integrated using a high order separatrix integration method to avoid features like limit cycles. The result is a mesh with naturally curved quadrilateral elements that do not need to be curved a posteriori to eliminate invalid elements. The mesh generation procedure is implemented in the open source mesh generation program NekMesh.
An approach is given for solving large linear systems that combines Krylov methods with use of two different grid levels. Eigenvectors are computed on the coarse grid and used to deflate eigenvalues on the fine grid. GMRES-type methods are first used on both the coarse and fine grids. Then another approach is given that has a restarted BiCGStab (or IDR) method on the fine grid. While BiCGStab is generally considered to be a non-restarted method, it works well in this context with deflating and restarting. Tests show this new approach can be very efficient for difficult linear equations problems.
Some numerical algorithms for elliptic eigenvalue problems are proposed, analyzed, and numerically tested. The methods combine advantages of the two-grid algorithm, two-space method, the shifted inverse power method, and the polynomial preserving rec overy technique . Our new algorithms compare favorably with some existing methods and enjoy superconvergence property.
The convergence rate of a multigrid method depends on the properties of the smoother and the so-called grid transfer operator. In this paper we define and analyze new grid transfer operators with a generic cutting size which are applicable for high o rder problems. We enlarge the class of available geometric grid transfer operators by relating the symbol analysis of the coarse grid correction with the approximation properties of univariate subdivision schemes. We show that the polynomial generation property and stability of a subdivision scheme are crucial for convergence and optimality of the corresponding multigrid method. We construct a new class of grid transfer operators from primal binary and ternary pseudo-spline symbols. Our numerical results illustrate the behavior of the new grid transfer operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا