ﻻ يوجد ملخص باللغة العربية
We study the incidence of group and filamentary dwarf galaxy accretion into Milky Way (MW) mass haloes using two types of hydrodynamical simulations: EAGLE, which resolves a large cosmological volume, and the AURIGA suite, which are very high resolution zoom-in simulations of individual MW-sized haloes. The present-day 11 most massive satellites are predominantly (75%) accreted in single events, 14% in pairs and 6% in triplets, with higher group multiplicities being unlikely. Group accretion becomes more common for fainter satellites, with 60% of the top 50 satellites accreted singly, 12% in pairs, and 28% in richer groups. A group similar in stellar mass to the Large Magellanic Cloud (LMC) would bring on average 15 members with stellar mass larger than $10^4{~rm M_odot}$. Half of the top 11 satellites are accreted along the two richest filaments. The accretion of dwarf galaxies is highly anisotropic, taking place preferentially perpendicular to the halo minor axis, and, within this plane, preferentially along the halo major axis. The satellite entry points tend to be aligned with the present-day central galaxy disc and satellite plane, but to a lesser extent than with the halo shape. Dwarfs accreted in groups or along the richest filament have entry points that show an even larger degree of alignment with the host halo than the full satellite population. We also find that having most satellites accreted as a single group or along a single filament is unlikely to explain the MW disc of satellites.
We analyse the orbital kinematics of the Milky Way (MW) satellite system utilizing the latest systemic proper motions for 38 satellites based on data from Gaia Data Release 2. Combining these data with distance and line-of-sight velocity measurements
We measure the evolution of the quiescent fraction and quenching efficiency of satellites around star-forming and quiescent central galaxies with stellar mass $log(M_{mathrm{cen}}/M_{odot})>10.5$ at $0.3<z<2.5$. We combine imaging from three deep nea
We investigate the relation between star formation (SF) and black hole accretion luminosities, using a sample of 492 type-2 active galactic nuclei (AGNs) at z < 0.22, which are detected in the far-infrared (FIR) surveys with AKARI and Herschel. We ad
Observations of the Galactic Center (GC) have accumulated a multitude of forensic evidence indicating that several million years ago the center of the Milky Way galaxy was teaming with starforming and accretion-powered activity -- this paints a rathe
(Abridged) We perform dissipationless N-body simulations to elucidate the dynamical response of thin disks to bombardment by cold dark matter (CDM) substructure. Our method combines (1) cosmological simulations of the formation of Milky Way (MW)-size