ﻻ يوجد ملخص باللغة العربية
Background: Ab initio many-body methods whose numerical cost scales polynomially with the number of particles have been developed over the past fifteen years to tackle closed-shell mid-mass nuclei. Open-shell nuclei have been further addressed by implementing variants based on the concept of spontaneous symmetry breaking (and restoration). Purpose: In order to access the spectroscopy of open-shell nuclei more systematically while controlling the numerical cost, we design a novel many-body method that combines the merit of breaking and restoring symmetries with those brought about by low-rank individual excitations. Methods: The recently proposed truncated configuration-interaction method based on optimized symmetry-broken and -restored states is extended to the z-signature symmetry associated with a discrete subgroup of SU(2). The highly-truncated N-body Hilbert subspace within which the Hamiltonian is diagonalized is spanned by a z-signature broken and restored Slater determinant vacuum and associated low-rank excitations. Results: The proposed method provides an excellent reproduction of the ground-state energy and of low-lying excitation energies of various z-signatures and total angular momenta. In doing so, the successive benefits of (i) breaking the symmetry, (ii) restoring the symmetry, (iii) including low-rank particle-hole excitations and (iv) optimizing the amount by which the underlying vacuum breaks the symmetry are illustrated. Conclusions: The numerical cost of the newly designed variational method is polynomial with respect to the system size. The present study confirms the results obtained previously for the attractive pairing Hamiltonian in connection with the breaking and restoration of U(1) global gauge symmetry. These two studies constitute a strong motivation to apply this method to realistic nuclear Hamiltonians.
Background: Ab initio many-body methods have been developed over the past ten years to address mid-mass nuclei... As progress in the design of inter-nucleon interactions is made, further efforts must be made to tailor many-body methods. Methods: We
We explore the breaking of rotational symmetry on the lattice for bound state energies and practical methods for suppressing this breaking. We demonstrate the general problems associated with lattice discretization errors and finite-volume errors usi
We study the breaking of rotational symmetry on the lattice for irreducible tensor operators and practical methods for suppressing this breaking. We illustrate the features of the general problem using an $alpha$ cluster model for $^{8}$Be. We focus
Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the $N=Z$ line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density function
The conventional Skyrme interaction is generalized by adding zero-range charge-symmetry-breaking and charge-independence-breaking terms, and the corresponding energy density functional is derived. It is shown that the extended model accounts for expe