ترغب بنشر مسار تعليمي؟ اضغط هنا

A Corpus of Deep Argumentative Structures as an Explanation to Argumentative Relations

108   0   0.0 ( 0 )
 نشر من قبل Paul Reisert
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we compose a new task for deep argumentative structure analysis that goes beyond shallow discourse structure analysis. The idea is that argumentative relations can reasonably be represented with a small set of predefined patterns. For example, using value judgment and bipolar causality, we can explain a support relation between two argumentative segments as follows: Segment 1 states that something is good, and Segment 2 states that it is good because it promotes something good when it happens. We are motivated by the following questions: (i) how do we formulate the task?, (ii) can a reasonable pattern set be created?, and (iii) do the patterns work? To examine the task feasibility, we conduct a three-stage, detailed annotation study using 357 argumentative relations from the argumentative microtext corpus, a small, but highly reliable corpus. We report the coverage of explanations captured by our patterns on a test set composed of 270 relations. Our coverage result of 74.6% indicates that argumentative relations can reasonably be explained by our small pattern set. Our agreement result of 85.9% shows that a reasonable inter-annotator agreement can be achieved. To assist with future work in computational argumentation, the annotated corpus is made publicly available.



قيم البحث

اقرأ أيضاً

While argument mining has achieved significant success in classifying argumentative relations between statements (support, attack, and neutral), we have a limited computational understanding of logical mechanisms that constitute those relations. Most recent studies rely on black-box models, which are not as linguistically insightful as desired. On the other hand, earlier studies use rather simple lexical features, missing logical relations between statements. To overcome these limitations, our work classifies argumentative relations based on four logical and theory-informed mechanisms between two statements, namely (i) factual consistency, (ii) sentiment coherence, (iii) causal relation, and (iv) normative relation. We demonstrate that our operationalization of these logical mechanisms classifies argumentative relations without directly training on data labeled with the relations, significantly better than several unsupervised baselines. We further demonstrate that these mechanisms also improve supervised classifiers through representation learning.
Systems for automatic argument generation and debate require the ability to (1) determine the stance of any claims employed in the argument and (2) assess the specificity of each claim relative to the argument context. Existing work on understanding claim specificity and stance, however, has been limited to the study of argumentative structures that are relatively shallow, most often consisting of a single claim that directly supports or opposes the argument thesis. In this paper, we tackle these tasks in the context of complex arguments on a diverse set of topics. In particular, our dataset consists of manually curated argument trees for 741 controversial topics covering 95,312 unique claims; lines of argument are generally of depth 2 to 6. We find that as the distance between a pair of claims increases along the argument path, determining the relative specificity of a pair of claims becomes easier and determining their relative stance becomes harder.
When engaging in argumentative discourse, skilled human debaters tailor claims to the beliefs of the audience, to construct effective arguments. Recently, the field of computational argumentation witnessed extensive effort to address the automatic ge neration of arguments. However, existing approaches do not perform any audience-specific adaptation. In this work, we aim to bridge this gap by studying the task of belief-based claim generation: Given a controversial topic and a set of beliefs, generate an argumentative claim tailored to the beliefs. To tackle this task, we model the peoples prior beliefs through their stances on controversial topics and extend state-of-the-art text generation models to generate claims conditioned on the beliefs. Our automatic evaluation confirms the ability of our approach to adapt claims to a set of given beliefs. In a manual study, we additionally evaluate the generated claims in terms of informativeness and their likelihood to be uttered by someone with a respective belief. Our results reveal the limitations of modeling users beliefs based on their stances, but demonstrate the potential of encoding beliefs into argumentative texts, laying the ground for future exploration of audience reach.
The purpose of an argumentative text is to support a certain conclusion. Yet, they are often omitted, expecting readers to infer them rather. While appropriate when reading an individual text, this rhetorical device limits accessibility when browsing many texts (e.g., on a search engine or on social media). In these scenarios, an explicit conclusion makes for a good candidate summary of an argumentative text. This is especially true if the conclusion is informative, emphasizing specific concepts from the text. With this paper we introduce the task of generating informative conclusions: First, Webis-ConcluGen-21 is compiled, a large-scale corpus of 136,996 samples of argumentative texts and their conclusions. Second, two paradigms for conclusion generation are investigated; one extractive, the other abstractive in nature. The latter exploits argumentative knowledge that augment the data via control codes and finetuning the BART model on several subsets of the corpus. Third, insights are provided into the suitability of our corpus for the task, the differences between the two generation paradigms, the trade-off between informativeness and conciseness, and the impact of encoding argumentative knowledge. The corpus, code, and the trained models are publicly available.
We present a computational exploration of argument critique writing by young students. Middle school students were asked to criticize an argument presented in the prompt, focusing on identifying and explaining the reasoning flaws. This task resembles an established college-level argument critique task. Lexical and discourse features that utilize detailed domain knowledge to identify critiques exist for the college task but do not perform well on the young students data. Instead, transformer-based architecture (e.g., BERT) fine-tuned on a large corpus of critique essays from the college task performs much better (over 20% improvement in F1 score). Analysis of the performance of various configurations of the system suggests that while childrens writing does not exhibit the standard discourse structure of an argumentative essay, it does share basic local sequential structures with the more mature writers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا