ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximating the Sum of Independent Non-Identical Binomial Random Variables

98   0   0.0 ( 0 )
 نشر من قبل Boxiang Liu
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The distribution of sum of independent non-identical binomial random variables is frequently encountered in areas such as genomics, healthcare, and operations research. Analytical solutions to the density and distribution are usually cumbersome to find and difficult to compute. Several methods have been developed to approximate the distribution, and among these is the saddlepoint approximation. However, implementation of the saddlepoint approximation is non-trivial and, to our knowledge, an R package is still lacking. In this paper, we implemented the saddlepoint approximation in the textbf{sinib} package. We provide two examples to illustrate its usage. One example uses simulated data while the other uses real-world healthcare data. The textbf{sinib} package addresses the gap between the theory and the implementation of approximating the sum of independent non-identical binomials.



قيم البحث

اقرأ أيضاً

We aim to estimate the probability that the sum of nonnegative independent and identically distributed random variables falls below a given threshold, i.e., $mathbb{P}(sum_{i=1}^{N}{X_i} leq gamma)$, via importance sampling (IS). We are particularly interested in the rare event regime when $N$ is large and/or $gamma$ is small. The exponential twisting is a popular technique that, in most of the cases, compares favorably to existing estimators. However, it has several limitations: i) it assumes the knowledge of the moment generating function of $X_i$ and ii) sampling under the new measure is not straightforward and might be expensive. The aim of this work is to propose an alternative change of measure that yields, in the rare event regime corresponding to large $N$ and/or small $gamma$, at least the same performance as the exponential twisting technique and, at the same time, does not introduce serious limitations. For distributions whose probability density functions (PDFs) are $mathcal{O}(x^{d})$, as $x rightarrow 0$ and $d>-1$, we prove that the Gamma IS PDF with appropriately chosen parameters retrieves asymptotically, in the rare event regime, the same performance of the estimator based on the use of the exponential twisting technique. Moreover, in the Log-normal setting, where the PDF at zero vanishes faster than any polynomial, we numerically show that a Gamma IS PDF with optimized parameters clearly outperforms the exponential twisting change of measure. Numerical experiments validate the efficiency of the proposed estimator in delivering a highly accurate estimate in the regime of large $N$ and/or small $gamma$.
Suppose you and your friend both do $n$ tosses of an unfair coin with probability of heads equal to $alpha$. What is the behavior of the probability that you obtain at least $d$ more heads than your friend if you make $r$ additional tosses? We obtain asymptotic and monotonicity/convexity properties for this competing probability as a function of $n$, and demonstrate surprising phase transition phenomenons as parameters $ d, r$ and $alpha$ vary. Our main tools are integral representations based on Fourier analysis.
We introduce a new functional representation of probability density functions (PDFs) of non-negative random variables via a product of a monomial factor and linear combinations of decaying exponentials with complex exponents. This approximate represe ntation of PDFs is obtained for any finite, user-selected accuracy. Using a fast algorithm involving Hankel matrices, we develop a general numerical method for computing the PDF of the sums, products, or quotients of any number of non-negative random variables yielding the result in the same type of functional representation. We present several examples to demonstrate the accuracy of the approach.
For a binomial random variable $xi$ with parameters $n$ and $b/n$, it is well known that the median equals $b$ when $b$ is an integer. In 1968, Jogdeo and Samuels studied the behaviour of the relative difference between ${sf P}(xi=b)$ and $1/2-{sf P} (xi<b)$. They proved its monotonicity in $n$ and posed a question about its monotonicity in $b$. This question is motivated by the solved problem proposed by Ramanujan in 1911 on the monotonicity of the same quantity but for a Poisson random variable with an integer parameter $b$. In the paper, we answer this question and introduce a simple way to analyse the monotonicity of similar functions.
157 - Luc Devroye , Gabor Lugosi 2007
It is shown that functions defined on ${0,1,...,r-1}^n$ satisfying certain conditions of bounded differences that guarantee sub-Gaussian tail behavior also satisfy a much stronger ``local sub-Gaussian property. For self-bounding and configuration fun ctions we derive analogous locally subexponential behavior. The key tool is Talagrands [Ann. Probab. 22 (1994) 1576--1587] variance inequality for functions defined on the binary hypercube which we extend to functions of uniformly distributed random variables defined on ${0,1,...,r-1}^n$ for $rge2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا