ﻻ يوجد ملخص باللغة العربية
Vertical (-201) and (010) beta-Ga2O3 Schottky barrier diodes (SBDs) were fabricated on single-crystal substrates grown by edge-defined film-fed growth (EFG) method. High resolution X-ray diffraction (HRXRD) and atomic force microscopy (AFM) confirmed good crystal quality and surface morphology of the substrates. The electrical properties of both devices, including current-voltage (I-V) and capacitance-voltage (C-V) characteristics, were comprehensively measured and compared. The (-201) and (010) SBDs exhibited on-resistances (Ron) of 0.56 and 0.77 m{Omega}cm2, turn-on voltages (Von) of 1.0 and 1.3 V, Schottky barrier heights (SBH) of 1.05 and 1.20 eV, electron mobilities of 125 and 65 cm2/(Vs), respectively, with a high on-current of ~1.3 kA/cm2 and on/off ratio of ~109. The (010) SBD had a larger Von and SBH than (-201) SBD due to anisotropic surface properties (i.e., surface Fermi level pinning and band bending), as supported by X-ray photoelectron spectroscopy (XPS) measurements. Temperature-dependent I-V also revealed the inhomogeneous nature of the SBH in both devices, where (-201) SBD showed a more uniform SBH distribution. The homogeneous SBH was also extracted: 1.33 eV for (-201) SBD and 1.53 eV for (010) SBD. The reverse leakage current of the devices was well described by the two-step trap-assisted tunneling model and the one-dimensional variable range hopping conduction (1D-VRH) model. The (-201) SBD showed larger leakage current due to its lower SBH and smaller activation energy. These results indicate the crystalline anisotropy of beta-Ga2O3 can affect the electrical properties of vertical SBDs and should be taken into consideration when designing beta-Ga2O3 electronics.
Vertical $pn$ heterojunction diodes were prepared by plasma-assisted molecular beam epitaxy of unintentionally-doped $p$-type SnO layers with hole concentrations ranging from $p=10^{18}$ to $10^{19}$cm$^{-3}$ on unintentionally-doped $n$-type $beta$-
We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). Near room temperature, the forward-bias diode characteristics a
The quasi-static anisotropic permittivity parameters of electrically insulating gallium oxide (beta-Ga2O3) were determined by terahertz spectroscopy. Polarization-resolved frequency domain spectroscopy in the spectral range from 200 GHz to 1 THz was
We show that it is possible to prepare and identify ultra--thin sheets of graphene on crystalline substrates such as SrTiO$_3$, TiO$_2$, Al$_2$O$_3$ and CaF$_2$ by standard techniques (mechanical exfoliation, optical and atomic force microscopy). On
We report the first realization of molecular beam epitaxy grown strained GaN quantum well field-effect transistors on single-crystal bulk AlN substrates. The fabricated double heterostructure FETs exhibit a two- dimensional electron gas (2DEG) densit