ﻻ يوجد ملخص باللغة العربية
In 2006, Gao and Zeng cite{GZ} gave the free field realizations of highest weight modules over a class of extended affine Lie algebras. In the present paper, applying the technique of localization to those free field realizations, we construct a class of new weight modules over the extended affine Lie algebras. We give necessary and sufficient conditions for these modules to be irreducible. In this way, we construct free field realizations for a class of simple weight modules with infinite weight multiplicities over the extended affine Lie algebras.
We prove a character formula for the irreducible modules from the category $mathcal{O}$ over the simple affine vertex algebra of type $A_n$ and $C_n$ $(n geq 2)$ of level $k=-1$. We also give a conjectured character formula for types $D_4$, $E_6$, $E
We classify all simple bounded highest weight modules of a basic classical Lie superalgebra $mathfrak g$. In particular, our classification leads to the classification of the simple weight modules with finite weight multiplicities over all classical
In [19], Zheng studied the bounded derived categories of constructible $bar{mathbb{Q}}_l$-sheaves on some algebraic stacks consisting of the representations of a enlarged quiver and categorified the integrable highest weight modules of the correspond
The rank $n$ symplectic oscillator Lie algebra $mathfrak{g}_n$ is the semidirect product of the symplectic Lie algebra $mathfrak{sp}_{2n}$ and the Heisenberg Lie algebra $H_n$. In this paper, we study weight modules with finite dimensional weight spa
The Bershadsky-Polyakov algebras are the minimal quantum hamiltonian reductions of the affine vertex algebras associated to $mathfrak{sl}_3$ and their simple quotients have a long history of applications in conformal field theory and string theory. T