ترغب بنشر مسار تعليمي؟ اضغط هنا

On characters of irreducible highest weight modules of negative integer level over affine Lie algebras

186   0   0.0 ( 0 )
 نشر من قبل Minoru Wakimoto
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a character formula for the irreducible modules from the category $mathcal{O}$ over the simple affine vertex algebra of type $A_n$ and $C_n$ $(n geq 2)$ of level $k=-1$. We also give a conjectured character formula for types $D_4$, $E_6$, $E_7$, $E_8$ and levels $k=-1, cdots, -b$, where $b=2,3,4,6$ respectively.



قيم البحث

اقرأ أيضاً

In 2006, Gao and Zeng cite{GZ} gave the free field realizations of highest weight modules over a class of extended affine Lie algebras. In the present paper, applying the technique of localization to those free field realizations, we construct a clas s of new weight modules over the extended affine Lie algebras. We give necessary and sufficient conditions for these modules to be irreducible. In this way, we construct free field realizations for a class of simple weight modules with infinite weight multiplicities over the extended affine Lie algebras.
249 - Chun-Ju Lai 2013
We construct a family of homomorphisms between Weyl modules for affine Lie algebras in characteristic p, which supports our conjecture on the strong linkage principle in this context. We also exhibit a large class of reducible Weyl modules beyond level one, for p not necessarily small.
The Bershadsky-Polyakov algebras are the minimal quantum hamiltonian reductions of the affine vertex algebras associated to $mathfrak{sl}_3$ and their simple quotients have a long history of applications in conformal field theory and string theory. T heir representation theories are therefore quite interesting. Here, we classify the simple relaxed highest-weight modules, with finite-dimensional weight spaces, for all admissible but nonintegral levels, significantly generalising the known highest-weight classifications [arxiv:1005.0185, arxiv:1910.13781]. In particular, we prove that the simple Bershadsky-Polyakov algebras with admissible nonintegral $mathsf{k}$ are always rational in category $mathscr{O}$, whilst they always admit nonsemisimple relaxed highest-weight modules unless $mathsf{k}+frac{3}{2} in mathbb{Z}_{ge0}$.
We classify all simple bounded highest weight modules of a basic classical Lie superalgebra $mathfrak g$. In particular, our classification leads to the classification of the simple weight modules with finite weight multiplicities over all classical Lie superalgebras. We also obtain some character formulas of strongly typical bounded highest weight modules of $mathfrak g$.
Let $n>1$ be an integer, $alphain{mathbb C}^n$, $bin{mathbb C}$, and $V$ a $mathfrak{gl}_n$-module. We define a class of weight modules $F^alpha_{b}(V)$ over $sl_{n+1}$ using the restriction of modules of tensor fields over the Lie algebra of vector fields on $n$-dimensional torus. In this paper we consider the case $n=2$ and prove the irreducibility of such 5-parameter $mathfrak{sl}_{3}$-modules $F^alpha_{b}(V)$ generically. All such modules have infinite dimensional weight spaces and lie outside of the category of Gelfand-Tsetlin modules. Hence, this construction yields new families of irreducible $mathfrak{sl}_{3}$-modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا