ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological energy bounds for the Skyrme and Faddeev models with massive pions

174   0   0.0 ( 0 )
 نشر من قبل Derek Harland
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Derek Harland




اسأل ChatGPT حول البحث

A topological lower bound on the Skyrme energy which depends explicity on the pion mass is derived. This bound coincides with the previously best known bound when the pion mass vanishes, and improves on it whenever the pion mass is non-zero. The new bound can in particular circumstances be saturated. New energy bounds are also derived for the Skyrme model on a compact manifold, for the Faddeev-Skyrme model with a potential term, and for the Aratyn-Ferreira-Zimerman and Nicole models.



قيم البحث

اقرأ أيضاً

Solitons in the Skyrme-Faddeev model on R^2xS^1 are shown to undergo buckling transitions as the circumference of the S^1 is varied. These results support a recent conjecture that solitons in this field theory are well-described by a much simpler model of elastic rods.
The symplectic analysis for the four dimensional Pontryagin and Euler invariants is performed within the Faddeev-Jackiw context. The Faddeev-Jackiw constraints and the generalized Faddeev-Jackiw brackets are reported; we show that in spite of the Pon tryagin and Euler classes give rise the same equations of motion, its respective symplectic structures are different to each other. In addition, a quantum state that solves the Faddeev-Jackiw constraints is found, and we show that the quantum states for these invariants are different to each other. Finally, we present some remarks and conclusions.
247 - Marcin Kisielowski 2013
We have introduced Faddeev-Niemi type variables for static SU(3) Yang-Mills theory. The variables suggest that a non-linear sigma model whose sigma fields take values in SU(3)/(U(1)xU(1)) and SU(3)/(SU(2)xU(1)) may be relevant to infrared limit of th e theory. Shabanov showed that the energy functional of the non-linear sigma model is bounded from below by certain functional. However, the Shabanovs functional is not homotopy invariant, and its value can be an arbitrary real number -- therefore it is not a topological charge. Since the third homotopy group of SU(3)/(U(1)xU(1)) is isomorphic to the group of integer numbers, there is a non-trivial topological charge (given by the isomorphism). We apply Novikovs procedure to obtain integral expression for this charge. The resulting formula is analogous to the Whiteheads realization of the Hopf invariant.
165 - Jakub Lis 2011
In this paper we investigate the Q-ball Ansatz in the baby Skyrme model. First, the appearance of peakons, i.e. solutions with extremely large absolute values of the second derivative at maxima, is analyzed. It is argued that such solutions are intri nsic to the baby Skyrme model and do not depend on the detailed form of a potential used in calculations. Next, we concentrate on compact non spinning Q-balls. We show the failure of a small parameter expansion in this case. Finally, we explore the existence and parameter dependence of Q-ball solutions.
Tensor models are generalizations of matrix models and as such, it is a natural question to ask whether they satisfy some form of the topological recursion. The world of unitary-invariant observables is however much richer in tensor models than in ma trix models. It is therefore a priori unclear which set of observables could satisfy the topological recursion. Such a set of observables was identified a few years ago in the context of the quartic melonic model by the first author and Dartois. It was shown to satisfy an extension of the topological recursion introduced by Borot and called the blobbed topological recursion. Here we show that this set of observables is present in arbitrary tensor models which have non-vanishing couplings for the quartic melonic interactions. It satisfies the blobbed topological recursion in a universal way, i.e. independently of the choices of the other interactions. In combinatorial terms, the correlation functions describe stuffed maps with colored boundary components. The specifics of the model only appear in the generating functions of the stuffings and the blobbed topological recursion only requires them to have well-defined $1/N$ expansions. The spectral curve is a disjoint union of Gaussian spectral curves, with the cylinder function receiving an additional holomorphic part. This result is achieved via a perturbative rewriting of tensor models as multi-matrix models due to the first author, Lionni and Rivasseau. It is then possible to formally integrate all degrees of freedom except those which enter the topological recursion, meaning interpreting the Feynman graphs as stuffed maps. We further provide new expressions to relate the expectations of $U(N)^d$-invariant observables on the tensor and matrix sides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا