ﻻ يوجد ملخص باللغة العربية
We present here some conjectures on the diagonalizability of uniform principal bundles on rational homogeneous spaces, that are natural extensions of classical theorems on uniform vector bundles on the projective space, and study the validity of these conjectures in the case of classical groups.
As a natural extension of the theory of uniform vector bundles on Fano manifolds, we consider uniform principal bundles, and study them by means of the associated flag bundles, as their natural projective geometric realizations. In this paper we deve
We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2le dleq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $k^n$, where $k$ is an a
In this work we study $k$-type uniform Steiner bundles, being $k$ the lowest degree of the splitting. We prove sharp upper and lower bounds for the rank in the case $k=1$ and moreover we give families of examples for every allowed possible rank and e
Instanton bundles on $mathbb{P}^3$ have been at the core of the research in Algebraic Geometry during the last thirty years. Motivated by the recent extension of their definition to other Fano threefolds of Picard number one, we develop the theory of
We give a short, geometric proof of Grahams theorem on positivity in the equivariant cohomology of a flag variety, based on a transversality argument.