ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-of-Flight Electron Energy Loss Spectroscopy by Longitudinal Phase Space Manipulation with Microwave Cavities

58   0   0.0 ( 0 )
 نشر من قبل Wouter Verhoeven
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility to perform high-resolution time-resolved electron energy loss spectroscopy has the potential to impact a broad range of research fields. Resolving small energy losses with ultrashort electron pulses, however, is an enormous challenge due to the low average brightness of a pulsed beam. In this letter, we propose to use time-of-flight measurements combined with longitudinal phase space manipulation using resonant microwave cavities. This allows for both an accurate detection of energy losses with a high current throughput, and efficient monochromation. First, a proof-of-principle experiment is presented, showing that with the incorporation of a compression cavity the flight time resolution can be improved significantly. Then, it is shown through simulations that by adding a cavity-based monochromation technique, a full-width-at-half-maximum energy resolution of 22 meV can be achieved with 3.1 ps pulses at a beam energy of 30 keV with currently available technology. By combining state-of-the-art energy resolutions with a pulsed electron beam, the technique proposed here opens up the way to detecting short-lived excitations within the regime of highly collective physics.



قيم البحث

اقرأ أيضاً

64 - J. Seok , G. Ha , J. Power 2021
Generating temporally separated two X-ray pulses or even two pulses with different colors has been pursued for various X-ray experiments. Recently, this concept is extended to generate multi-color X-ray pulses, and a few approaches have been proposed . We introduce one of possible new ways to generate multi-color X-ray using a longitudinal phase space (LPS) modulator and a manipulator. In this example, a wakefield structure and double-emittance exchange beamline are used as the LPS modulator and the LPS manipulator, respectively. In this way, we can generate multiple bunches having designed energy and time separations. These separations can be adjusted for each application differently. This paper describes the principle of the method and its feasibility.
At the Metrology Light Source (MLS), the compact electron storage ring of the Physikalisch-Technische Bundesanstalt (PTB) with a circumference of 48,m, a specific operation mode with two stable closed orbits for stored electrons was realized by trans verse resonance island buckets. One of these orbits is closing only after three turns. In combination with single-bunch operation, the new mode was applied for electron time-of-flight spectroscopy with an interval of the synchrotron radiation pulses which is three times the revolution period at the MLS of 160,ns. The achievement is of significant importance for PTBs future programs of angular-resolved electron spectroscopy with synchrotron radiation and similar projects at other compact electron storage rings. Moreover, the applied scheme for orbit and source spot selection via optical imaging at the insertion device beamline of the MLS and may be relevant for the BESSY VSR project of the Helmholtz-Zentrum Berlin.
Removal of residual linear energy chirp and intrinsic nonlinear energy curvature in the relativistic electron beam from radiofrequency linear accelerator is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it was theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons itself in the corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ~10,000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by about 50% was observed, in good agreement with the theoretical expectations.
214 - C. M. Bhat 2013
Barrier rf buckets have brought about new challenges in longitudinal beam dynamics of charged particle beams in synchrotrons and at the same time led to many new remarkable prospects in beam handling. In this paper, I describe a novel beam stacking s cheme for synchrotrons using barrier buckets without any emittance dilution to the beam. First I discuss the general principle of the method, called longitudinal phase-space coating. Multi-particle beam dynamics simulations of the scheme applied to the Recycler, convincingly validates the concepts and feasibility of the method. Then I demonstrate the technique experimentally in the Recycler and also use it in operation. A spin-off of this scheme is its usefulness in mapping the incoherent synchrotron tune spectrum of the beam particles in barrier buckets and producing a clean hollow beam in longitudinal phase space. Both of which are described here in detail with illustrations. The beam stacking scheme presented here is the first of its kind.
121 - C. M. Bhat 2015
In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via mul ti-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا