ﻻ يوجد ملخص باللغة العربية
In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via multi-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.
Barrier rf buckets have brought about new challenges in longitudinal beam dynamics of charged particle beams in synchrotrons and at the same time led to many new remarkable prospects in beam handling. In this paper, I describe a novel beam stacking s
I describe a new scheme for selectively isolating high density low longitudinal emittance beam particles in a storage ring from the rest of the beam without emittance dilution. I discuss the general principle of the method, called longitudinal moment
To understand and control the dynamics in the longitudinal phase space, time-resolved measurements of different bunch parameters are required. For a reconstruction of this phase space, the detector systems have to be synchronized. This reconstruction
This letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97 GeV/$c$ bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the prece
This paper presents a conceptual approach to phase modulation of the cavity field in storage ring RF systems. An implementation of the concept on Dimtel low-level RF controllers is also presented. The method is illustrated with the test results from