ﻻ يوجد ملخص باللغة العربية
Understanding out-of-equilibrium quantum dynamics is a critical outstanding problem, with key questions regarding characterizing adiabaticity for applications in quantum technologies. We show how the metric-space approach to quantum mechanics naturally characterizes regimes of quantum dynamics, and provides an appealingly visual tool for assessing their degree of adiabaticity. Further, the dynamic trajectories of quantum systems in metric space suggest a lack of ergodicity, thus providing a better understanding of the fundamental one-to-one mapping between densities and wavefunctions.
It is still a challenge to experimentally realize shortcuts to adiabaticity (STA) for a non-Hermitian quantum system since a non-Hermitian quantum systems counterdiabatic driving Hamiltonian contains some unrealizable auxiliary control fields. In thi
We show that for a quantum system coupled to both vibrational and electromagnetic environments, enforcing additivity of their combined influences results in non-equilibrium dynamics that does not respect the Franck-Condon principle. We overcome this
The realization of quantum adiabatic dynamics is at the core of implementations of adiabatic quantum computers. One major issue is to efficiently compromise between the long time scales required by the adiabatic protocol and the detrimental effects o
The quantum adiabatic theorem is fundamental to time dependent quantum systems, but being able to characterize quantitatively an adiabatic evolution in many-body systems can be a challenge. This work demonstrates that the use of appropriate state and
Shortcuts to adiabaticity (STA) are powerful quantum control methods, allowing quick evolution into target states of otherwise slow adiabatic dynamics. Such methods have widespread applications in quantum technologies, and various STA protocols have