ﻻ يوجد ملخص باللغة العربية
We present Wasserstein introspective neural networks (WINN) that are both a generator and a discriminator within a single model. WINN provides a significant improvement over the recent introspective neural networks (INN) method by enhancing INNs generative modeling capability. WINN has three interesting properties: (1) A mathematical connection between the formulation of the INN algorithm and that of Wasserstein generative adversarial networks (WGAN) is made. (2) The explicit adoption of the Wasserstein distance into INN results in a large enhancement to INN, achieving compelling results even with a single classifier --- e.g., providing nearly a 20 times reduction in model size over INN for unsupervised generative modeling. (3) When applied to supervised classification, WINN also gives rise to improved robustness against adversarial examples in terms of the error reduction. In the experiments, we report encouraging results on unsupervised learning problems including texture, face, and object modeling, as well as a supervised classification task against adversarial attacks.
We propose introspective convolutional networks (ICN) that emphasize the importance of having convolutional neural networks empowered with generative capabilities. We employ a reclassification-by-synthesis algorithm to perform training using a formul
We study unsupervised learning by developing introspective generative modeling (IGM) that attains a generator using progressively learned deep convolutional neural networks. The generator is itself a discriminator, capable of introspection: being abl
In recent years, many explanation methods have been proposed to explain individual classifications of deep neural networks. However, how to leverage the created explanations to improve the learning process has been less explored. As the privileged in
Mathematical morphology is a theory and technique to collect features like geometric and topological structures in digital images. Given a target image, determining suitable morphological operations and structuring elements is a cumbersome and time-c
We propose contextual convolution (CoConv) for visual recognition. CoConv is a direct replacement of the standard convolution, which is the core component of convolutional neural networks. CoConv is implicitly equipped with the capability of incorpor