ترغب بنشر مسار تعليمي؟ اضغط هنا

Introspective Generative Modeling: Decide Discriminatively

96   0   0.0 ( 0 )
 نشر من قبل Long Jin
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study unsupervised learning by developing introspective generative modeling (IGM) that attains a generator using progressively learned deep convolutional neural networks. The generator is itself a discriminator, capable of introspection: being able to self-evaluate the difference between its generated samples and the given training data. When followed by repeated discriminative learning, desirable properties of modern discriminative classifiers are directly inherited by the generator. IGM learns a cascade of CNN classifiers using a synthesis-by-classification algorithm. In the experiments, we observe encouraging results on a number of applications including texture modeling, artistic style transferring, face modeling, and semi-supervised learning.



قيم البحث

اقرأ أيضاً

We propose introspective convolutional networks (ICN) that emphasize the importance of having convolutional neural networks empowered with generative capabilities. We employ a reclassification-by-synthesis algorithm to perform training using a formul ation stemmed from the Bayes theory. Our ICN tries to iteratively: (1) synthesize pseudo-negative samples; and (2) enhance itself by improving the classification. The single CNN classifier learned is at the same time generative --- being able to directly synthesize new samples within its own discriminative model. We conduct experiments on benchmark datasets including MNIST, CIFAR-10, and SVHN using state-of-the-art CNN architectures, and observe improved classification results.
Graphs are a fundamental abstraction for modeling relational data. However, graphs are discrete and combinatorial in nature, and learning representations suitable for machine learning tasks poses statistical and computational challenges. In this work , we propose Graphite, an algorithmic framework for unsupervised learning of representations over nodes in large graphs using deep latent variable generative models. Our model parameterizes variational autoencoders (VAE) with graph neural networks, and uses a novel iterative graph refinement strategy inspired by low-rank approximations for decoding. On a wide variety of synthetic and benchmark datasets, Graphite outperforms competing approaches for the tasks of density estimation, link prediction, and node classification. Finally, we derive a theoretical connection between message passing in graph neural networks and mean-field variational inference.
We present Wasserstein introspective neural networks (WINN) that are both a generator and a discriminator within a single model. WINN provides a significant improvement over the recent introspective neural networks (INN) method by enhancing INNs gene rative modeling capability. WINN has three interesting properties: (1) A mathematical connection between the formulation of the INN algorithm and that of Wasserstein generative adversarial networks (WGAN) is made. (2) The explicit adoption of the Wasserstein distance into INN results in a large enhancement to INN, achieving compelling results even with a single classifier --- e.g., providing nearly a 20 times reduction in model size over INN for unsupervised generative modeling. (3) When applied to supervised classification, WINN also gives rise to improved robustness against adversarial examples in terms of the error reduction. In the experiments, we report encouraging results on unsupervised learning problems including texture, face, and object modeling, as well as a supervised classification task against adversarial attacks.
Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limi ted data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset. We demonstrate, on several datasets, that good results are now possible using only a few thousand training images, often matching StyleGAN2 results with an order of magnitude fewer images. We expect this to open up new application domains for GANs. We also find that the widely used CIFAR-10 is, in fact, a limited data benchmark, and improve the record FID from 5.59 to 2.42.
Machine learning models are commonly trained end-to-end and in a supervised setting, using paired (input, output) data. Examples include recent super-resolution methods that train on pairs of (low-resolution, high-resolution) images. However, these e nd-to-end approaches require re-training every time there is a distribution shift in the inputs (e.g., night images vs daylight) or relevant latent variables (e.g., camera blur or hand motion). In this work, we leverage state-of-the-art (SOTA) generative models (here StyleGAN2) for building powerful image priors, which enable application of Bayes theorem for many downstream reconstruction tasks. Our method, Bayesian Reconstruction through Generative Models (BRGM), uses a single pre-trained generator model to solve different image restoration tasks, i.e., super-resolution and in-painting, by combining it with different forward corruption models. We keep the weights of the generator model fixed, and reconstruct the image by estimating the Bayesian maximum a-posteriori (MAP) estimate over the input latent vector that generated the reconstructed image. We further use variational inference to approximate the posterior distribution over the latent vectors, from which we sample multiple solutions. We demonstrate BRGM on three large and diverse datasets: (i) 60,000 images from the Flick Faces High Quality dataset (ii) 240,000 chest X-rays from MIMIC III and (iii) a combined collection of 5 brain MRI datasets with 7,329 scans. Across all three datasets and without any dataset-specific hyperparameter tuning, our simple approach yields performance competitive with current task-specific state-of-the-art methods on super-resolution and in-painting, while being more generalisable and without requiring any training. Our source code and pre-trained models are available online: https://razvanmarinescu.github.io/brgm/.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا