ﻻ يوجد ملخص باللغة العربية
We observed Betelgeuse using ALMAs extended configuration in band 7 (f~340 GHz, {lambda}~0.88 mm), resulting in a very high angular resolution of 18 mas. Using a solid body rotation model of the 28SiO(v=2,J=8-7) line emission, we show that the supergiant is rotating with a projected equatorial velocity of v_eq sin i = 5.47 +/- 0.25 km/s at the equivalent continuum angular radius R_star = 29.50 +/- 0.14 mas. This corresponds to an angular rotation velocity of {omega} sin i = (5.6 +/- 1.3) x 10^(-9) rad/s. The position angle of its north pole is PA = 48.0 +/- 3.5{deg}. The rotation period of Betelgeuse is estimated to P/sin i = 36 +/- 8 years. The combination of our velocity measurement with previous observations in the ultraviolet shows that the chromosphere is co-rotating with the star up to a radius of ~10 au (45 mas or 1.5x the ALMA continuum radius). The coincidence of the position angle of the polar axis of Betelgeuse with that of the major ALMA continuum hot spot, a molecular plume, and a partial dust shell (from previous observations) suggests that focused mass loss is currently taking place in the polar region of the star. We propose that this hot spot corresponds to the location of a particularly strong rogue convection cell, which emits a focused molecular plume that subsequently condenses into dust at a few stellar radii. Rogue convection cells therefore appear to be an important factor shaping the anisotropic mass loss of red supergiants.
Context: Betelgeuse is one the largest stars in the sky in terms of angular diameter. Structures on the stellar photosphere have been detected in the visible and near-infrared as well as a compact molecular environment called the MOLsphere. Mid-infra
We study the circumstellar evolution of the binary HD101584, consisting of a post-AGB star and a low-mass companion, which is most likely a post-common-envelope-evolution system. We used ALMA observations of the 12CO, 13CO, and C18O J=2-1 lines and t
Atacama Large Millimetre/sub-millimetre Array (ALMA) observations of the CO(1-0) and CO(2-1) emissions from the circumstellar envelope of the Asymptotic Giant Branch (AGB) star EP Aqr have been made with four times better spatial resolution than prev
The HIFI instrument on board of the Herschel Space Observatory (HSO) has been very successful in detecting molecular lines from circumstellar envelopes around evolved stars, like massive red supergiants, Asymptotic Giant Branch (AGB) and post-AGB sta
The nearby red supergiant (RSG) Betelgeuse has a complex circumstellar medium out to at least 0.5 parsecs from its surface, shaped by its mass-loss history within the past 0.1 Myr, its environment, and its motion through the interstellar medium (ISM)