ﻻ يوجد ملخص باللغة العربية
As one of the most popular applications of lidar systems, the atmospheric visibility is defined to be inversely proportional to the atmospheric extinction coefficient at 0.55 um. Since the laser at 1.5 um shows the highest maximum permissible exposure in the wavelength ranging from 0.3 um to 10 um, the eye-safe 1.5 um lidar can be deployed in urban areas. In such a case, the measured extinction coefficient at 1.5 um should be converted to that at 0.55 um for visibility retrieval. Although several models have been established since 1962, the accurate wavelength conversion remains a challenge. An adaptive inversion algorithm for 1.5 um visibility lidar is proposed and demonstrated by using the in situ Angstrom wavelength exponent, which is derived from either a sun photometer or an aerosol spectrometer. The impact of the particle size distribution of atmospheric aerosols and the Rayleigh backscattering of atmospheric molecules are taken into account. In comparison, the Angstrom wavelength exponent derived from the sun photometer is 7.7% higher than that derived from the aerosol spectrometer. Then, using 1.5 um visibility lidar, the visibility with a temporal resolution of 5 min is detected over 48 hours in Hefei (31.83 N, 117.25 E). The average visibility error between the new method and a visibility sensor (Vaisala, PWD52) is 5.2% with the R-square value of 0.96, while the relative error between another reference visibility lidar at 532 nm and the visibility sensor is 6.7% with the R-square value of 0.91. All results agree with each other well, demonstrating the accuracy and stability of the algorithm.
Aqua MODIS, unlike its predecessor on board the Terra spacecraft, had always been thought to have been spared from significant deleterious impacts of electronic crosstalk on its imagery. However, recent efforts brought to our attention the presence o
The IceCube neutrino observatory uses $1,mathrm{km}^{3}$ of the natural Antarctic ice near the geographic South Pole as optical detection medium. When charged particles, such as particles produced in neutrino interactions, pass through the ice with r
Advances in atomic resolution in situ environmental transmission electron microscopy for direct probing of gas-solid reactions, including at very high temperatures are described. In addition, recent developments of dynamic real time in situ studies a
We propose a concise approximate description, and a method for efficiently obtaining this description, via adaptive random sampling of the performance (running time, memory consumption, or any other profileable numerical quantity) of a given algorith
The advent of a new generation of large-scale galaxy surveys is pushing cosmological numerical simulations in an uncharted territory. The simultaneous requirements of high resolution and very large volume pose serious technical challenges, due to the