ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Aggregated Transmission Propagation Networks for Haze Removal and Beyond

90   0   0.0 ( 0 )
 نشر من قبل Risheng Liu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Single image dehazing is an important low-level vision task with many applications. Early researches have investigated different kinds of visual priors to address this problem. However, they may fail when their assumptions are not valid on specific images. Recent deep networks also achieve relatively good performance in this task. But unfortunately, due to the disappreciation of rich physical rules in hazes, large amounts of data are required for their training. More importantly, they may still fail when there exist completely different haze distributions in testing images. By considering the collaborations of these two perspectives, this paper designs a novel residual architecture to aggregate both prior (i.e., domain knowledge) and data (i.e., haze distribution) information to propagate transmissions for scene radiance estimation. We further present a variational energy based perspective to investigate the intrinsic propagation behavior of our aggregated deep model. In this way, we actually bridge the gap between prior driven models and data driven networks and leverage advantages but avoid limitations of previous dehazing approaches. A lightweight learning framework is proposed to train our propagation network. Finally, by introducing a taskaware image separation formulation with a flexible optimization scheme, we extend the proposed model for more challenging vision tasks, such as underwater image enhancement and single image rain removal. Experiments on both synthetic and realworld images demonstrate the effectiveness and efficiency of the proposed framework.



قيم البحث

اقرأ أيضاً

Haze removal is important for computational photography and computer vision applications. However, most of the existing methods for dehazing are designed for daytime images, and cannot always work well in the nighttime. Different from the imaging con ditions in the daytime, images captured in nighttime haze condition may suffer from non-uniform illumination due to artificial light sources, which exhibit low brightness/contrast and color distortion. In this paper, we present a new nighttime hazy imaging model that takes into account both the non-uniform illumination from artificial light sources and the scattering and attenuation effects of haze. Accordingly, we propose an efficient dehazing algorithm for nighttime hazy images. The proposed algorithm includes three sequential steps. i) It enhances the overall brightness by performing a gamma correction step after estimating the illumination from the original image. ii) Then it achieves a color-balance result by performing a color correction step after estimating the color characteristics of the incident light. iii) Finally, it remove the haze effect by applying the dark channel prior and estimating the point-wise environmental light based on the previous illumination-balance result. Experimental results show that the proposed algorithm can achieve illumination-balance and haze-free results with good color rendition ability.
Hazy images are common in real scenarios and many dehazing methods have been developed to automatically remove the haze from images. Typically, the goal of image dehazing is to produce clearer images from which human vision can better identify the ob ject and structural details present in the images. When the ground-truth haze-free image is available for a hazy image, quantitative evaluation of image dehazing is usually based on objective metrics, such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM). However, in many applications, large-scale images are collected not for visual examination by human. Instead, they are used for many high-level vision tasks, such as automatic classification, recognition and categorization. One fundamental problem here is whether various dehazing methods can produce clearer images that can help improve the performance of the high-level tasks. In this paper, we empirically study this problem in the important task of image classification by using both synthetic and real hazy image datasets. From the experimental results, we find that the existing image-dehazing methods cannot improve much the image-classification performance and sometimes even reduce the image-classification performance.
92 - Binghan Li , Wenrui Zhang , Mi Lu 2019
Dark Channel Prior (DCP) is a widely recognized traditional dehazing algorithm. However, it may fail in bright region and the brightness of the restored image is darker than hazy image. In this paper, we propose an effective method to optimize DCP. W e build a multiple linear regression haze-removal model based on DCP atmospheric scattering model and train this model with RESIDE dataset, which aims to reduce the unexpected errors caused by the rough estimations of transmission map t(x) and atmospheric light A. The RESIDE dataset provides enough synthetic hazy images and their corresponding groundtruth images to train and test. We compare the performances of different dehazing algorithms in terms of two important full-reference metrics, the peak-signal-to-noise ratio (PSNR) as well as the structural similarity index measure (SSIM). The experiment results show that our model gets highest SSIM value and its PSNR value is also higher than most of state-of-the-art dehazing algorithms. Our results also overcome the weakness of DCP on real-world hazy images
In this paper, we propose spatial propagation networks for learning the affinity matrix for vision tasks. We show that by constructing a row/column linear propagation model, the spatially varying transformation matrix exactly constitutes an affinity matrix that models dense, global pairwise relationships of an image. Specifically, we develop a three-way connection for the linear propagation model, which (a) formulates a sparse transformation matrix, where all elements can be the output from a deep CNN, but (b) results in a dense affinity matrix that effectively models any task-specific pairwise similarity matrix. Instead of designing the similarity kernels according to image features of two points, we can directly output all the similarities in a purely data-driven manner. The spatial propagation network is a generic framework that can be applied to many affinity-related tasks, including but not limited to image matting, segmentation and colorization, to name a few. Essentially, the model can learn semantically-aware affinity values for high-level vision tasks due to the powerful learning capability of the deep neural network classifier. We validate the framework on the task of refinement for image segmentation boundaries. Experiments on the HELEN face parsing and PASCAL VOC-2012 semantic segmentation tasks show that the spatial propagation network provides a general, effective and efficient solution for generating high-quality segmentation results.
We investigate the computational complexity of minimizing the source side-effect in order to remove a given number of tuples from the output of a conjunctive query. This is a variant of the well-studied {em deletion propagation} problem, the differen ce being that we are interested in removing the smallest subset of input tuples to remove a given number of output tuples} while deletion propagation focuses on removing a specific output tuple. We call this the {em Aggregated Deletion Propagation} problem. We completely characterize the poly-time solvability of this problem for arbitrary conjunctive queries without self-joins. This includes a poly-time algorithm to decide solvability, as well as an exact structural characterization of NP-hard instances. We also provide a practical algorithm for this problem (a heuristic for NP-hard instances) and evaluate its experimental performance on real and synthetic datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا