ﻻ يوجد ملخص باللغة العربية
A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 {AA} neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.
We present the development of a specialized concrete for neutron shielding at neutron research facilities, based on the addition of hydrogen atoms in the form of polyethylene and also B$_{4}$C for enhancing the neutron capture properties of the concr
The invention of self-shielding copper substrate neutron guides is described, along with the rationale behind the development, and the realisation of commercial supply. The relative advantages with respect to existing technologies are quantified. The
We calculate the distribution of HI within 750 proper kpc/h of a quasar, Lbol = 1.62e13 Lsun, powered by an SMBH, Mbh = 4.47e8 Msun, at z = 3. Our numerical model includes a cosmological hydrodynamic simulation that tracks the self consistent growth
Neutron transport along guides is governed by the Liouville theorem and the technology involved has advanced in recent decades. Computer simulations have proven to be useful tools in the design and conception of neutron guide systems in facilities. I
The effective size of Broad Line Region (BLR), so-called the BLR radius, in galaxies with active galactic nuclei (AGN) scales with the source luminosity. Therefore by determining this location either observationally through reverberation mapping or t