ﻻ يوجد ملخص باللغة العربية
We present the development of a specialized concrete for neutron shielding at neutron research facilities, based on the addition of hydrogen atoms in the form of polyethylene and also B$_{4}$C for enhancing the neutron capture properties of the concrete. We show information on the mechanical properties of the concrete and the neutronics, in particular its relevance to modern spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden. The new concrete exhibits a 15% lower mass density, a compressible strength of 50% relative to a standard concrete and a significant increase in performance of shielding against MeV neutrons and lower energies. The concrete could find application at the ESS in for example common shielding components, individual beamline shielding and instrument caves. Initial neutronic tests of the concrete, carried out at Lund University, have also verified the performance in the MeV neutron energy range and the results are presented.
A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying
We report on the fabrication and use of deuterated polyethylene (dPE) as a coating material for ultra-cold neutron (UCN) storage and transport. The Fermi potential has been determined to be 214~neV and the wall loss coefficient $eta$ is 1.3$cdot$10$^
Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrino-nucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magne
We have developed a new material for neutron shielding applications where space is restricted. W$_2$B is an excellent attenuator of neutrons and gamma-rays, due to the combined gamma attenuation of W and neutron absorption of B. However, its low frac
The European Spallation Source is being constructed in Lund, Sweden and is planned to be the worlds brightest pulsed spallation neutron source for cold and thermal neutron beams ($le$ 1 eV). The facility uses a 2 GeV proton beam to produce neutrons f