ﻻ يوجد ملخص باللغة العربية
We present results from our recent lattice QCD study of $Npi$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. Using a variety of hadron operators, that include $qqq$-like, $Npi$ in $p$-wave and $Nsigma$ in $s$-wave, we systematically extract the excited lattice spectrum in the nucleon channel up to 1.65 GeV. Our lattice results indicate that N$pi$ scattering in the elastic approximation alone does not describe a low-lying Roper. Coupled channel effects between $Npi$ and $Npipi$ seem to be crucial to render a low-lying Roper in experiment, reinforcing the notion that this state could be a dynamically generated resonance. After giving a brief motivation for studying the Roper channel and the relevant technical details to this study, we will discuss the results and the conclusions based on our lattice investigation and in comparison with other lattice calculations.
We present a lattice QCD study of $Npi$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $N_f=2+1$ Wilson-
We analyze the quark mass dependence of the Roper mass to one-loop order in relativistic baryon chiral perturbation theory. The loop integrals are evaluated using infrared regularization which preserves chiral symmetry and establishes a chiral counti
We study the coupled pion-nucleon system (negative parity, isospin 1/2) based on a lattice QCD simulation for nf=2 mass degenerate light quarks. Both, standard 3-quarks baryon operators as well as meson-baryon (4+1)-quark operators are included. This
We determine the $Delta(1232)$ resonance parameters using lattice QCD and the Luscher method. The resonance occurs in elastic pion-nucleon scattering with $J^P=3/2^+$ in the isospin $I = 3/2$, $P$-wave channel. Our calculation is performed with $N_f=
The pseudoscalar correlator is an ideal lattice probe for thermal modifications to quarkonium spectra, given that it is not compromised by a contribution from a large transport peak. We construct a perturbative spectral function incorporating resumme