ترغب بنشر مسار تعليمي؟ اضغط هنا

Pion-nucleon scattering in the Roper channel from lattice QCD

277   0   0.0 ( 0 )
 نشر من قبل Christian B. Lang
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a lattice QCD study of $Npi$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $N_f=2+1$ Wilson-clover dynamical fermions, $m_pi simeq 156~$MeV and $Lsimeq 2.9~$fm. In addition to a number of $qqq$ interpolating fields, we implement operators for $Npi$ in $p$-wave and $Nsigma$ in $s$-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by $N(0)$, $N(0)pi(0)pi(0)$ (mixed with $N(0)sigma(0)$) and $N(p)pi(-p)$ with $psimeq 2pi/L$, where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental $Npi$ phase-shift would -- in the approximation of purely elastic $Npi$ scattering -- imply an additional eigenstate near the Roper mass $m_Rsimeq 1.43~$GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that $Npi$ elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with $Npipi$, seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of previous lattice studies based just on $qqq$ interpolators, that did not find a Roper eigenstate below $1.65~$GeV. The study of the coupled-channel scattering including a three-particle decay $Npipi$ remains a challenge.



قيم البحث

اقرأ أيضاً

229 - C. B. Lang , V. Verduci 2012
We study the coupled pion-nucleon system (negative parity, isospin 1/2) based on a lattice QCD simulation for nf=2 mass degenerate light quarks. Both, standard 3-quarks baryon operators as well as meson-baryon (4+1)-quark operators are included. This is an exploratory study for just one lattice size and lattice spacing and at a pion mass of 266 MeV. Using the distillation method and variational analysis we determine energy levels of the lowest eigenstates. Comparison with the results of simple 3-quark correlation studies exhibits drastic differences and a new level appears. A clearer picture of the negative parity nucleon spectrum emerges. For the parameters of the simulation we may assume elastic s-wave scattering and can derive values of the phase shift.
We determine the $Delta(1232)$ resonance parameters using lattice QCD and the Luscher method. The resonance occurs in elastic pion-nucleon scattering with $J^P=3/2^+$ in the isospin $I = 3/2$, $P$-wave channel. Our calculation is performed with $N_f= 2+1$ flavors of clover fermions on a lattice with $Lapprox 2.8$ fm. The pion and nucleon masses are $m_pi =255.4(1.6)$ MeV and $m_N=1073(5)$ MeV, and the strong decay channel $Delta rightarrow pi N$ is found to be above the threshold. To thoroughly map out the energy-dependence of the nucleon-pion scattering amplitude, we compute the spectra in all relevant irreducible representations of the lattice symmetry groups for total momenta up to $vec{P}=frac{2pi}{L}(1,1,1)$, including irreps that mix $S$ and $P$ waves. We perform global fits of the amplitude parameters to up to 21 energy levels, using a Breit-Wigner model for the $P$-wave phase shift and the effective-range expansion for the $S$-wave phase shift. From the location of the pole in the $P$-wave scattering amplitude, we obtain the resonance mass $m_Delta=1378(7)(9)$ MeV and the coupling $g_{Deltatext{-}pi N}=23.8(2.7)(0.9)$.
We report a state-of-the-art lattice calculation of the isovector quark transversity distribution of the proton at the physical pion mass. Within the framework of large-momentum effective theory (LaMET), we compute the transversity quasi-distribution s using clover valence fermions on 2+1+1-flavor (up/down, strange, charm) HISQ-lattice configurations with boosted proton momenta as large as 3.0~GeV. The relevant lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and systematically matched to the physical transversity distribution. With high statistics, large proton momenta and meticulous control of excited-state contamination, we provide the best theoretical prediction for the large-$x$ isovector quark transversity distribution, with better precision than the most recent global analyses of experimental data. Our result also shows that the sea quark asymmetry in the proton transversity distribution is consistent with zero, which has been assumed in all current global analyses.
145 - C. B. Lang , V. Verduci 2013
Including the meson-baryon (5 quark) intermediate states in a lattice simulation is challenging. However, it is important in order to obtain the correct energy eigenstates and to relate them to scattering phase shifts. Recent results for the negative parity nucleon channel and the problem of baryonic resonances in lattice calculations are discussed.
166 - A. Abdel-Rehim 2015
We present results on the nucleon scalar, axial and tensor charges as well as on the momentum fraction, and the helicity and transversity moments. The pion momentum fraction is also presented. The computation of these key observables is carried out u sing lattice QCD simulations at a physical value of the pion mass. The evaluation is based on gauge configurations generated with two degenerate sea quarks of twisted mass fermions with a clover term. We investigate excited states contributions with the nucleon quantum numbers by analyzing three sink-source time separations. We find that, for the scalar charge, excited states contribute significantly and to a less degree to the nucleon momentum fraction and helicity moment. Our analysis yields a value for the nucleon axial charge agrees with the experimental value and we predict a value of 1.027(62) in the $overline{text{MS}}$ scheme at 2 GeV for the isovector nucleon tensor charge directly at the physical point. The pion momentum fraction is found to be $langle xrangle_{u-d}^{pi^pm}=0.214(15)(^{+12}_{-9})$ in the $overline{rm MS}$ at 2 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا