ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth

85   0   0.0 ( 0 )
 نشر من قبل Francisco Salesa Greus
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.U. Abeysekara




اسأل ChatGPT حول البحث

The unexpectedly high flux of cosmic ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the HighAltitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of accelerated leptons, but the measured tera-electron volt emission profile constrains the diffusion of particles away from these sources to be much slower than previously assumed. We demonstrate that the leptons emitted by these objects are therefore unlikely to be the origin of the excess positrons, which may have a more exotic origin.



قيم البحث

اقرأ أيضاً

113 - T. Delahaye 2009
Secondary positrons are produced by spallation of cosmic rays within the interstellar gas. Measurements have been typically expressed in terms of the positron fraction, which exhibits an increase above 10 GeV. Many scenarios have been proposed to exp lain this feature, among them some additional primary positrons originating from dark matter annihilation in the Galaxy. The PAMELA satellite has provided high quality data that has enabled high accuracy statistical analyses to be made, showing that the increase in the positron fraction extends up to about 100 GeV. It is therefore of paramount importance to constrain theoretically the expected secondary positron flux to interpret the observations in an accurate way. We find the secondary positron flux to be reproduced well by the available observations, and to have theoretical uncertainties that we quantify to be as large as about one order of magnitude. We also discuss the positron fraction issue and find that our predictions may be consistent with the data taken before PAMELA. For PAMELA data, we find that an excess is probably present after considering uncertainties in the positron flux, although its amplitude depends strongly on the assumptions made in relation to the electron flux. By fitting the current electron data, we show that when considering a soft electron spectrum, the amplitude of the excess might be far lower than usually claimed. We provide fresh insights that may help to explain the positron data with or without new physical model ingredients. PAMELA observations and the forthcoming AMS-02 mission will allow stronger constraints to be aplaced on the cosmic--ray transport parameters, and are likely to reduce drastically the theoretical uncertainties.
Nearby gamma-ray bursts (GRBs) are likely to have represented a significant threat to life on the Earth. Recent observations suggest that a significant source of such bursts is compact binary mergers in globular clusters. This link between globular c lusters and GRBs offers the possibility to find time intervals in the past with higher probabilities of a nearby burst, by tracing globular cluster orbits back in time. Here we show that the expected flux from such bursts is not flat over the past 550 Myr but rather exhibits three broad peaks, at 70, 180 and 340 Myr ago. The main source for nearby GRBs for all three time intervals is the globular cluster 47 Tuc, a consequence of its large mass and high stellar encounter rate, as well as the fact that it is one of the globular clusters which comes quite close to the Sun. Mass extinction events indeed coincide with all three time intervals found in this study, although a chance coincidence is quite likely. Nevertheless, the identified time intervals can be used as a guide to search for specific signatures of GRBs in the geological record around these times.
The propagation of cosmic-ray electrons and positrons in the proximity of the Geminga pulsar is examined considering the transition from the quasi-ballistic, valid for the most recently injected particles, to the diffusive transport regime. For typic al interstellar values of the diffusion coefficient, the quasi-ballistic regime dominates the lepton distribution up to distances of a few tens of parsec from the pulsar for particle energies above $sim 10$ TeV. When such transition is taken into account, a good fit to the HAWC $gamma-$ray data around Geminga is obtained without the need to invoke a strong suppression of the diffusion coefficient.
134 - Rui-zhi Yang , Bing Liu 2021
The morphology of the extended $gamma$-ray source is governed by the propagation process of parent relativistic particles. In this paper, we investigate the surface brightness radial profile of extended $gamma$-ray sources illuminated by cosmic ray p rotons and electrons, considering the radiation mechanisms, projection effects, and the response of instruments. We found that the parent particle species and the propagation process can cause considerable differences in the observed radial profiles. Thus, the surface brightness profile can be used as a unique tool to identify the radiation mechanism and the propagation process of the parent particles. In addition, We also discuss the possible implications regarding the latest discoveries %results from very/ultra-high energy $gamma$-ray instruments like LHAASO and HAWC.
Recent observations of gamma-rays with the Fermi Large Area Telescope (LAT) in the direction of the inner Galaxy revealed a mysterious GeV excess. Its intensity is significantly above predictions of the standard model of cosmic rays (CRs) generation and propagation with a peak in the spectrum around a few GeV. Popular interpretations of this excess are due to either spherically distributed annihilating dark matter (DM) or abnormal population of millisecond pulsars. We suggested an alternative explanation of the excess through the CR interactions with molecular clouds in the Galactic Center (GC) region. We assumed that the excess could be imitated by the emission of molecular clouds with depleted density of CRs with energies below ~ 10 GeV inside. A novelty of our work is in detailed elaboration of the depletion mechanism of CRs with the mentioned energies through the barrier near the cloud edge formed by the self-excited MHD turbulence. Such depletion of CRs inside the clouds may be a reason of deficit of gamma rays from the Central Molecular Zone (CMZ) at energies below few GeV. This in turn changes the ratio between various emission components at those energies, and may potentially absorb the GeV excess by simple renormalization of key components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا