ترغب بنشر مسار تعليمي؟ اضغط هنا

On a possible origin of the gamma-ray excess around the Galactic Center

91   0   0.0 ( 0 )
 نشر من قبل Andrey Egorov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations of gamma-rays with the Fermi Large Area Telescope (LAT) in the direction of the inner Galaxy revealed a mysterious GeV excess. Its intensity is significantly above predictions of the standard model of cosmic rays (CRs) generation and propagation with a peak in the spectrum around a few GeV. Popular interpretations of this excess are due to either spherically distributed annihilating dark matter (DM) or abnormal population of millisecond pulsars. We suggested an alternative explanation of the excess through the CR interactions with molecular clouds in the Galactic Center (GC) region. We assumed that the excess could be imitated by the emission of molecular clouds with depleted density of CRs with energies below ~ 10 GeV inside. A novelty of our work is in detailed elaboration of the depletion mechanism of CRs with the mentioned energies through the barrier near the cloud edge formed by the self-excited MHD turbulence. Such depletion of CRs inside the clouds may be a reason of deficit of gamma rays from the Central Molecular Zone (CMZ) at energies below few GeV. This in turn changes the ratio between various emission components at those energies, and may potentially absorb the GeV excess by simple renormalization of key components.



قيم البحث

اقرأ أيضاً

Studies of Fermi data indicate an excess of GeV gamma rays around the Galactic center (GC), possibly due to dark matter. We show that young gamma-ray pulsars can yield a similar signal. First, a high concentration of GC supernovae naturally leads to a population of kicked pulsars symmetric about the GC. Second, while very-young pulsars with soft spectra reside near the Galactic plane, pulsars with spectra that have hardened with age accumulate at larger angles. This combination, including unresolved foreground pulsars, traces the morphology and spectrum of the Excess.
The Fermi satellite has recently detected gamma ray emission from the central regions of our Galaxy. This may be evidence for dark matter particles, a major component of the standard cosmological model, annihilating to produce high-energy photons. We show that the observed signal may instead be generated by millisecond pulsars that formed in dense star clusters in the Galactic halo. Most of these clusters were ultimately disrupted by evaporation and gravitational tides, contributing to a spherical bulge of stars and stellar remnants. The gamma ray amplitude, angular distribution, and spectral signatures of this source may be predicted without free parameters, and are in remarkable agreement with the observations. These gamma rays are from fossil remains of dispersed clusters, telling the history of the Galactic bulge.
A new measurement of a spatially extended gamma-ray signal from the center of the Andromeda galaxy (M31) has been recently published by the Fermi-LAT collaboration, reporting that the emission broadly resembles the so-called Galactic center excess (G CE) of the Milky Way (MW). At the same time, evidence is accumulating on a millisecond pulsar (MSPs) origin for the GCE. These elements prompt us to compare the mentioned observations with what is, perhaps, the simplest model for an MSP population, solely obtained by rescaling of the MSP luminosity function determined in the local MW disk via the respective stellar mass of the systems. It is remarkable that without free fitting parameters, this model can account for both the energetics and the morphology of the GCE within uncertainties. For M31, the estimated luminosity due to primordial MSPs is expected to contribute only about a quarter of the detected emission, although a dominant contribution cannot be excluded given the large uncertainties. If correct, the model predicts that the M31 disk emission due to MSP is not far below the present upper bound. We also discuss a few refinements of this simple model. In particular, we use the correlation between globular cluster gamma-ray luminosity and stellar encounter rate to gauge the dynamical MSP formation in the bulge. This component is expected to contribute to the GCE only at a level $lesssim 5%$, but it may be of some importance in explaining the signals morphology in the inner region of the Galaxy. We also comment on some effects which may lead to violations of the simple scaling used, on alternative models, and on future perspectives for improved diagnostics.
The Galactic Center (GC) has been long known to host gamma-ray emission detected to >10 TeV. HESS data now points to two plausible origins: the supermassive black hole (perhaps with >PeV cosmic rays and neutrinos) or high-energy electrons from the pu tative X-ray pulsar wind nebula G359.95-0.04 observed by Chandra and NuSTAR. We show that if the magnetic field experienced by PWN electrons is near the several mG ambient field strength suggested by radio observations of the nearby GC magnetar SGR J1745-29, synchrotron losses constrain the TeV gamma-ray output to be far below the data. Accounting for the peculiar geometry of GC infrared emission, we also find that the requisite TeV flux could be reached if the PWN is ~1 pc from Sgr A* and the magnetic field is two orders of magnitude weaker, a scenario that we discuss in relation to recent data and theoretical developments. Otherwise, Sgr A* is left, which would then be a PeV link to other AGN.
Various studies have implied the existence of a gaseous halo around the Galaxy extending out to 100 kpc. Galactic cosmic rays (CRs) that propagate to the halo, either by diffusion or by convection with the possibly existing large-scale Galactic wind, can interact with the gas therein and produce gamma-rays via proton-proton collision. We calculate the cosmic ray distribution in the halo and the gamma-ray flux, and explore the dependence of the result on model parameters such as diffusion coefficient, CR luminosity, CR spectral index. We find that the current measurement of isotropic gamma-ray background at $lesssim$TeV with Fermi Large Area Telescope already approaches a level that can provide interesting constraints on the properties of Galactic cosmic ray (e.g., with CR luminosity $L_{CR}leq 10^{41}$erg/s). We also discuss the possibilities of the Fermi bubble and IceCube neutrinos originating from the proton-proton collision between cosmic rays and gas in the halo, as well as the implication of our results for the baryon budget of the hot circumgalactic medium of our Galaxy. Given that the isotropic gamma-ray background is likely to be dominated by unresolved extragalactic sources, future telescopes may extract more individual sources from the IGRB, and hence put even more stringent restriction on the relevant quantities (such as Galactic cosmic ray luminosity and baryon budget in the halo) in the presence of a turbulent halo that we consider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا