ﻻ يوجد ملخص باللغة العربية
The quantum mechanical tunnelling process conserves the quantum properties of the particle considered. As applied to solid-state tunnelling (SST), this physical law was verified, within the field of spintronics, regarding the electron spin in early experiments across Ge tunnel barriers, and in the 90s across Al2O3 barriers. The conservation of the quantum parameter of orbital occupancy, as grouped into electronic symmetries, was observed in the 00s across MgO barriers, followed by SrTiO3 (STO). Barrier defects, such as oxygen vacancies, partly conserve this electronic symmetry. In the solid-state, an additional subtlety is the sign of the charge carrier: are holes or electrons involved in transport? We demonstrate that SST across MgO magnetic tunnel junctions (MTJs) with a large resistance-area (RA) product involves holes by examining how shifting the MTJs Fermi level alters the ensuing barrier heights defined by the barriers oxygen vacancies. In the process, we consolidate the description of tunnel barrier heights induced by specific oxygen-vacancy induced localized states. Our work opens prospects to understand the concurrent observation of high TMR and spin transfer torque across MgO-based nanopillars.
Radiofrequency vortex spin-transfer oscillators based on magnetic tunnel junctions with very low resistance area product were investigated. A high power of excitations has been obtained characterized by a power spectral density containing a very shar
Tunneling junctions containing no ferromagnetic elements have been fabricated and we show that distinct resistance states can be set by field cooling the devices from above the Neel along different orientations. Variations of the resistance up to 10%
Heterostructures composed of ferromagnetic layers that are mutually interacting through a nonmagnetic spacer are at the core of magnetic sensor and memory devices. In the present study, layer-resolved ferromagnetic resonance was used to investigate t
We calculate the conductance through double junctions of the type M(inf.)-Sn-Mm-Sn-M(inf.) and triple junctions of the type M(inf.)-Sn-Mm-Sn-Mm-Sn-M(inf.), where M(inf.) are semi-infinite metallic electrodes, Sn are n layers of semiconductor and Mm a
In electronic cooling with superconducting tunnel junctions, the cooling power is counterbalanced by the interaction with phonons and by the heat flow from the overheated leads. We study aluminium-based coolers that are equipped with a suspended norm