ترغب بنشر مسار تعليمي؟ اضغط هنا

An MBO scheme for minimizing the graph Ohta-Kawasaki functional

127   0   0.0 ( 0 )
 نشر من قبل Yves van Gennip
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Yves van Gennip




اسأل ChatGPT حول البحث

We study a graph based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational model for pattern formation. Graph based problems inspired by partial differential equations (PDEs) and varational methods have been the subject of many recent papers in the mathematical literature, because of their applications in areas such as image processing and data classification. This paper extends the area of PDE inspired graph based problems to pattern forming models, while continuing in the tradition of recent papers in the field. We introduce a mass conserving Merriman-Bence-Osher (MBO) scheme for minimizing the graph Ohta-Kawasaki functional with a mass constraint. We present three main results: (1) the Lyapunov functionals associated with this MBO scheme $Gamma$-converge to the Ohta-Kawasaki functional (which includes the standard graph based MBO scheme and total variation as a special case); (2) there is a class of graphs on which the Ohta-Kawasaki MBO scheme corresponds to a standard MBO scheme on a transformed graph and for which generalized comparison principles hold; (3) this MBO scheme allows for the numerical computation of (approximate) minimizers of the graph Ohta-Kawasaki functional with a mass constraint.



قيم البحث

اقرأ أيضاً

The Max-Cut problem is a well known combinatorial optimization problem. In this paper we describe a fast approximation method. Given a graph G, we want to find a cut whose size is maximal among all possible cuts. A cut is a partition of the vertex se t of G into two disjoint subsets. For an unweighted graph, the size of the cut is the number of edges that have one vertex on either side of the partition; we also consider a weighted version of the problem where each edge contributes a nonnegative weight to the cut. We introduce the signless Ginzburg-Landau functional and prove that this functional Gamma-converges to a Max-Cut objective functional. We approximately minimize this functional using a graph based signless Merriman-Bence-Osher scheme, which uses a signless Laplacian. We show experimentally that on some classes of graphs the resulting algorithm produces more accurate maximum cut approximations than the current state-of-the-art approximation algorithm. One of our methods of minimizing the functional results in an algorithm with a time complexity of O(|E|), where |E| is the total number of edges on G.
We present a computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model of diblock copolymers. The model is a fourth-order parabolic partial differential equation subject to homogeneous Neumann boundary conditions, which contains as a special case the celebrated Cahn-Hilliard equation. While the attractor structure of the latter model is completely understood for one-dimensional domains, the diblock copolymer extension exhibits considerably richer long-term dynamical behavior, which includes a high level of multistability. In this paper, we establish the existence of certain heteroclinic connections between the homogeneous equilibrium state, which represents a perfect copolymer mixture, and all local and global energy minimizers. In this way, we show that not every solution originating near the homogeneous state will converge to the global energy minimizer, but rather is trapped by a stable state with higher energy. This phenomenon can not be observed in the one-dimensional Cahn-Hillard equation, where generic solutions are attracted by a global minimizer.
The Ohta-Kawasaki model for diblock-copolymers is well known to the scientific community of diffuse-interface methods. To accurately capture the long-time evolution of the moving interfaces, we present a derivation of the corresponding sharp-interfac e limit using matched asymptotic expansions, and show that the limiting process leads to a Hele-Shaw type moving interface problem. The numerical treatment of the sharp-interface limit is more complicated due to the stiffness of the equations. To address this problem, we present a boundary integral formulation corresponding to a sharp interface limit of the Ohta-Kawasaki model. Starting with the governing equations defined on separate phase domains, we develop boundary integral equations valid for multi-connected domains in a 2D plane. For numerical simplicity we assume our problem is driven by a uniform Dirichlet condition on a circular far-field boundary. The integral formulation of the problem involves both double- and single-layer potentials due to the modified boundary condition. In particular, our formulation allows one to compute the nonlinear dynamics of a non-equilibrium system and pattern formation of an equilibrating system. Numerical tests on an evolving slightly perturbed circular interface (separating the two phases) are in excellent agreement with the linear analysis, demonstrating that the method is stable, efficient and spectrally accurate in space.
Motivated by models of fracture mechanics, this paper is devoted to the analysis of unilateral gradient flows of the Ambrosio-Tortorelli functional, where unilaterality comes from an irreversibility constraint on the fracture density. In the spirit o f gradient flows in metric spaces, such evolutions are defined in terms of curves of maximal unilateral slope, and are constructed by means of implicit Euler schemes. An asymptotic analysis in the Mumford-Shah regime is also carried out. It shows the convergence towards a generalized heat equation outside a time increasing crack set.
136 - Ignace Loris 2008
L1Packv2 is a Mathematica package that contains a number of algorithms that can be used for the minimization of an $ell_1$-penalized least squares functional. The algorithms can handle a mix of penalized and unpenalized variables. Several instructive examples are given. Also, an implementation that yields an exact output whenever exact data are given is provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا