ترغب بنشر مسار تعليمي؟ اضغط هنا

A Max-Cut approximation using a graph based MBO scheme

57   0   0.0 ( 0 )
 نشر من قبل Yves van Gennip
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Max-Cut problem is a well known combinatorial optimization problem. In this paper we describe a fast approximation method. Given a graph G, we want to find a cut whose size is maximal among all possible cuts. A cut is a partition of the vertex set of G into two disjoint subsets. For an unweighted graph, the size of the cut is the number of edges that have one vertex on either side of the partition; we also consider a weighted version of the problem where each edge contributes a nonnegative weight to the cut. We introduce the signless Ginzburg-Landau functional and prove that this functional Gamma-converges to a Max-Cut objective functional. We approximately minimize this functional using a graph based signless Merriman-Bence-Osher scheme, which uses a signless Laplacian. We show experimentally that on some classes of graphs the resulting algorithm produces more accurate maximum cut approximations than the current state-of-the-art approximation algorithm. One of our methods of minimizing the functional results in an algorithm with a time complexity of O(|E|), where |E| is the total number of edges on G.



قيم البحث

اقرأ أيضاً

126 - Yves van Gennip 2017
We study a graph based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational m odel for pattern formation. Graph based problems inspired by partial differential equations (PDEs) and varational methods have been the subject of many recent papers in the mathematical literature, because of their applications in areas such as image processing and data classification. This paper extends the area of PDE inspired graph based problems to pattern forming models, while continuing in the tradition of recent papers in the field. We introduce a mass conserving Merriman-Bence-Osher (MBO) scheme for minimizing the graph Ohta-Kawasaki functional with a mass constraint. We present three main results: (1) the Lyapunov functionals associated with this MBO scheme $Gamma$-converge to the Ohta-Kawasaki functional (which includes the standard graph based MBO scheme and total variation as a special case); (2) there is a class of graphs on which the Ohta-Kawasaki MBO scheme corresponds to a standard MBO scheme on a transformed graph and for which generalized comparison principles hold; (3) this MBO scheme allows for the numerical computation of (approximate) minimizers of the graph Ohta-Kawasaki functional with a mass constraint.
Tumor detection in biomedical imaging is a time-consuming process for medical professionals and is not without errors. Thus in recent decades, researchers have developed algorithmic techniques for image processing using a wide variety of mathematical methods, such as statistical modeling, variational techniques, and machine learning. In this paper, we propose a semi-automatic method for liver segmentation of 2D CT scans into three labels denoting healthy, vessel, or tumor tissue based on graph cuts. First, we create a feature vector for each pixel in a novel way that consists of the 59 intensity values in the time series data and propose a simplified perimeter cost term in the energy functional. We normalize the data and perimeter terms in the functional to expedite the graph cut without having to optimize the scaling parameter $lambda$. In place of a training process, predetermined tissue means are computed based on sample regions identified by expert radiologists. The proposed method also has the advantage of being relatively simple to implement computationally. It was evaluated against the ground truth on a clinical CT dataset of 10 tumors and yielded segmentations with a mean Dice similarity coefficient (DSC) of .77 and mean volume overlap error (VOE) of 36.7%. The average processing time was 1.25 minutes per slice.
We show that the linear or quadratic 0/1 program[P:quadmin{ c^Tx+x^TFx : :A,x =b;:xin{0,1}^n},]can be formulated as a MAX-CUT problem whose associated graph is simply related to the matrices $F$ and $A^TA$.Hence the whole arsenal of approximation tec hniques for MAX-CUT can be applied. We also compare the lower boundof the resulting semidefinite (or Shor) relaxation with that of the standard LP-relaxation and the first semidefinite relaxationsassociated with the Lasserre hierarchy and the copositive formulations of $P$.
In gravitationally stratified fluids, length scales are normally much greater in the horizontal direction than in the vertical one. When modelling these fluids it can be advantageous to use the hydrostatic approximation, which filters out vertically propagating sound waves and thus allows a greater timestep. We briefly review this approximation, which is commonplace in atmospheric physics, and compare it to other approximations used in astrophysics such as Boussinesq and anelastic, finding that it should be the best approximation to use in context such as radiative stellar zones, compact objects, stellar or planetary atmospheres and other contexts. We describe a finite-difference numerical scheme which uses this approximation, which includes magnetic fields.
In this work, we initiate the study of fault tolerant Max Cut, where given an edge-weighted undirected graph $G=(V,E)$, the goal is to find a cut $Ssubseteq V$ that maximizes the total weight of edges that cross $S$ even after an adversary removes $k $ vertices from $G$. We consider two types of adversaries: an adaptive adversary that sees the outcome of the random coin tosses used by the algorithm, and an oblivious adversary that does not. For any constant number of failures $k$ we present an approximation of $(0.878-epsilon)$ against an adaptive adversary and of $alpha_{GW}approx 0.8786$ against an oblivious adversary (here $alpha_{GW}$ is the approximation achieved by the random hyperplane algorithm of [Goemans-Williamson J. ACM `95]). Additionally, we present a hardness of approximation of $alpha_{GW}$ against both types of adversaries, rendering our results (virtually) tight. The non-linear nature of the fault tolerant objective makes the design and analysis of algorithms harder when compared to the classic Max Cut. Hence, we employ approaches ranging from multi-objective optimization to LP duality and the ellipsoid algorithm to obtain our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا