ترغب بنشر مسار تعليمي؟ اضغط هنا

The temporal and spatial scales of density structures released in the slow solar wind during solar activity maximum

90   0   0.0 ( 0 )
 نشر من قبل Eduardo Sanchez-Diaz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent study, we took advantage of a highly tilted coronal neutral sheet to show that density structures, extending radially over several solar radii (Rs), are released in the forming slow solar wind approximately 4-5 Rs above the solar surface (Sanchez-Diaz et al. 2017). We related the signatures of this formation process to intermittent magnetic reconnection occurring continuously above helmet streamers. We now exploit the heliospheric imagery from the Solar Terrestrial Relation Observatory (STEREO) to map the spatial and temporal distribution of the ejected structures. We demonstrate that streamers experience quasi-periodic bursts of activity with the simultaneous outpouring of small transients over a large range of latitudes in the corona. This cyclic activity leads to the emergence of well-defined and broad structures. Derivation of the trajectories and kinematic properties of the individual small transients that make up these large-scale structures confirms their association with the forming Slow Solar Wind (SSW). We find that these transients are released, on average, every 19.5 hours, simultaneously at all latitudes with a typical radial size of 12 Rs. Their spatial distribution, release rate and three-dimensional extent are used to estimate the contribution of this cyclic activity to the mass flux carried outward by the SSW. Our results suggest that, in interplanetary space, the global structure of the heliospheric current sheet is dominated by a succession of blobs and associated flux ropes. We demonstrated this with an example event using STEREO-A in-situ measurements.



قيم البحث

اقرأ أيضاً

We investigate the characteristics and the sources of the slow (< 450 km/s) solar wind during the four years (2006-2009) of low solar activity between Solar Cycles 23 and 24. We use a comprehensive set of in-situ observations in the near-Earth solar wind (Wind and ACE) and remove the periods when large-scale interplanetary coronal mass ejections were present. The investigated period features significant variations in the global coronal structure, including the frequent presence of low-latitude active regions in 2006-2007, long-lived low- and mid-latitude coronal holes in 2006 - mid-2008 and mostly the quiet Sun in 2009. We examine both Carrington Rotation averages of selected solar plasma, charge state and compositional parameters and distributions of these parameters related to Quiet Sun, Active Region Sun and the Coronal Hole Sun. While some of the investigated parameters (e.g., speed, the C^{+6}/C^{+4} and He/H ratio) show clear variations over our study period and with solar wind source type, some (Fe/O) exhibit very little changes. Our results highlight the difficulty in distinguishing between the slow solar wind sources based on the inspection of the solar wind conditions.
In contrast with the fast solar wind, that originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low FIP elements -- akin to what is observed in closed coronal loops -- the slow wind cou ld form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations which have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the WISPR white light imager onboard Parker Solar Probe (PSP). In this work, we propose that the main mechanism controlling the release of flux ropes is a flow-modified tearing mode at the heliospheric current sheet (HCS). We use MHD simulations of the solar wind and corona to reproduce realistic configurations and outflows surrounding the HCS. We find that this process is able to explain long ($sim 10-20$h) and short ($sim 1-2$h) timescales of density structures observed in the slow solar wind. This study also sheds new light on the structure, topology and composition of the slow solar wind, and could be, in the near future, compared with white light and in situ PSP observations.
The study of spatial and temporal scales on which small magnetic structures (magnetic elements) are organized in the quiet Sun may be approached by determining how they are transported on the solar photosphere by convective motions. The process invol ved is diffusion. Taking advantage of Hinode high spatial resolution magnetograms of a quiet Sun region at the disk center, we tracked 20145 magnetic elements. The large field of view (~50 Mm) and the long duration of the observations (over 25 hours without interruption at a cadence of 90 seconds) allowed us to investigate the turbulent flows at unprecedented large spatial and temporal scales. In the field of view, in fact, an entire supergranule is clearly recognizable. The magnetic elements displacement spectrum shows a double-regime behavior: superdiffusive (gamma=1.34 +/- 0.02) up to granular spatial scales (~1500 km), and slightly superdiffusive (gamma=1.20 +/- 0.05) up to supergranular scales.
Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed field corona, implying that it originates from the continuous opening and closing of flux at the b oundary between open and closed field. On the other hand, the slow wind also has large angular width, up to ~ 60{circ}, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind and magnetic field for a time period preceding the August 1, 2008 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere, and propose further tests of the model.
The present solar cycle is particular in many aspects: it had a delayed rising phase, it is the weakest of the last 100 years, and it presents two peaks separated by more than one year. To understand the impact of these characteristics on the solar c hromosphere and coronal dynamics, images from a wide wavelength range are needed. In this work we use the 17~GHz radio continuum, formed in the upper chromosphere and the EUV lines 304 and 171~{AA}, that come from the transition region (He II) and the corona (Fe IX, X), respectively. We analyze daily images at 304 and 171~{AA} obtained by the Atmospheric Imaging Assembly (AIA). The 17~GHz maps were obtained by the Nobeyama Radioheliograph (NoRH). To construct synoptic limb charts, we calculated the mean emission of delimited limb areas with 100 wide and angular separation of $5^circ$. At the equatorial region, the results show an hemispheric asymmetry of the solar activity. The northern hemisphere dominance is coincident with the first sunspot number peak, whereas the second peak occurs concurrently with the increase in the activity at the south. The polar emission reflects the presence of coronal holes at both EUV wavelengths, moreover, the 17~GHz polar brightenings can be associated with the coronal holes. Until 2013, both EUV coronal holes and radio polar brightenings were more predominant at the south pole. Since then they have not been apparent in the north, but thus appear in the beginning of 2015 in the south as observed in the synoptic charts. This work strengthens the association between coronal holes and the 17~GHz polar brightenings as it is evident in the synoptic limb charts, in agreement with previous case study papers. The enhancement of the radio brightness in coronal holes is explained by the presence of bright patches closely associated with the presence of intense unipolar magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا