ﻻ يوجد ملخص باللغة العربية
The present solar cycle is particular in many aspects: it had a delayed rising phase, it is the weakest of the last 100 years, and it presents two peaks separated by more than one year. To understand the impact of these characteristics on the solar chromosphere and coronal dynamics, images from a wide wavelength range are needed. In this work we use the 17~GHz radio continuum, formed in the upper chromosphere and the EUV lines 304 and 171~{AA}, that come from the transition region (He II) and the corona (Fe IX, X), respectively. We analyze daily images at 304 and 171~{AA} obtained by the Atmospheric Imaging Assembly (AIA). The 17~GHz maps were obtained by the Nobeyama Radioheliograph (NoRH). To construct synoptic limb charts, we calculated the mean emission of delimited limb areas with 100 wide and angular separation of $5^circ$. At the equatorial region, the results show an hemispheric asymmetry of the solar activity. The northern hemisphere dominance is coincident with the first sunspot number peak, whereas the second peak occurs concurrently with the increase in the activity at the south. The polar emission reflects the presence of coronal holes at both EUV wavelengths, moreover, the 17~GHz polar brightenings can be associated with the coronal holes. Until 2013, both EUV coronal holes and radio polar brightenings were more predominant at the south pole. Since then they have not been apparent in the north, but thus appear in the beginning of 2015 in the south as observed in the synoptic charts. This work strengthens the association between coronal holes and the 17~GHz polar brightenings as it is evident in the synoptic limb charts, in agreement with previous case study papers. The enhancement of the radio brightness in coronal holes is explained by the presence of bright patches closely associated with the presence of intense unipolar magnetic fields.
We present the association rates between solar energetic particles (SEPs) and the radio emission signatures in the corona and IP space during the entire solar cycle 23. We selected SEPs associated with X and M-class flares from the visible solar hemi
We describe a new technique to measure the height of the X-ray limb with observations from occulted X-ray flare sources as observed by the RHESSI (the Reuven Ramaty High-Energy Spectroscopic Imager) satellite. This method has model dependencies diffe
The specification of the upper atmosphere strongly relies on solar proxies that can properly reproduce the solar energetic input in the UV. Whilst the microwave flux at 10.7 cm (also called F10.7 index) has been routinely used as a solar proxy, we sh
At the beginning of the 4 November 2015 flare, in the 1300 -- 2000 MHz frequency range, we observed a very rare slowly positively drifting burst. We searched for associated phenomena in simultaneous EUV observations made by IRIS, SDO/AIA, Hinode/XRT
The solar group at the National Astronomical Observatory of Japan is conducting synoptic solar observations with the Solar Flare Telescope. While it is a part of a long-term solar monitoring, contributing to the study of solar dynamo governing solar