ﻻ يوجد ملخص باللغة العربية
We demonstrate that the dynamics of kicked spin chains possess a remarkable duality property. The trace of the unitary evolution operator for $N$ spins at time $T$ is related to one of a non-unitary evolution operator for $T$ spins at time $N$. We investigate the spectrum of this dual operator with a focus on the different parameter regimes (chaotic, regular) of the spin chain. We present applications of this duality relation to spectral statistics in an accompanying paper.
Previously, we demonstrated that the dynamics of kicked spin chains possess a remarkable duality property. The trace of the unitary evolution operator for $N$ spins at time $T$ is related to one of a non-unitary evolution operator for $T$ spins at ti
The field of quantum chaos originated in the study of spectral statistics for interacting many-body systems, but this heritage was almost forgotten when single-particle systems moved into the focus. In recent years new interest emerged in many-body a
Taking one-dimensional random transverse Ising model (RTIM) with the double-Gaussian disorder for example, we investigated the spin autocorrelation function (SAF) and associated spectral density at high temperature by the recursion method. Based on t
Despite considerable progress during the last decades in devising a semiclassical theory for classically chaotic quantum systems a quantitative semiclassical understanding of their dynamics at late times (beyond the so-called Heisenberg time $T_H$) i
We study the time evolution of the local magnetization in the critical Ising chain in a transverse field after a sudden change of the parameters at a defect. The relaxation of the defect magnetization is algebraic and the corresponding exponent, whic